Skip to main content

Advertisement

Log in

Biological aspects of segmental bone defects management

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Segmental bone defect management is among the most demanding issues in orthopaedics and there is a great medical need for establishing an appropriate treatment option. Tissue transfer, including bone autografts or free flaps, depending on the size of the bone deficiency, is currently the “gold standard” for treatment of such defects. Osteogenic cells in combination with adequate growth factors and a suitable scaffold, from the aspect of osteoinductivity, osteoconductivity and mechanical stability, are mandatory to successfully restore a bone defect as determined in the “diamond concept”. Our current knowledge on this topic is limited and mostly based on retrospective studies, case reports and a few small randomised clinical trials due to the lack of large and accurately designed randomised clinical trials using novel approaches to regenerative orthopaedics. However, preclinical research on different animal models for critical size defects is abundant, showing emerging candidate cells and cytokines for defect rebridgement. In this article we provide an overview on existing clinical studies and promising preclinical experiments that utilised osteogenic cells, growth factors and biomaterials, as well as their combination for repair of segmental bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Keating JF, Simpson AH, Robinson CM (2005) The management of fractures with bone loss. J Bone Joint Surg (Br) 87:142–150

    Article  CAS  Google Scholar 

  2. Molina CS, Stinner DJ, Obremsky WT (2014) Treatment of traumatic segmental long-bone defects. J Bone Joint Surg Am 2(4):e1

    Google Scholar 

  3. Cappendijk VC, van de Ven KP, Madern GC, Haverlag R, van Vugt AB, Hazebroek FW (2000) Strength of youth: conservative treatment of segmental bone defect in children. J Trauma 49:1123–1125

    Article  CAS  PubMed  Google Scholar 

  4. Hinsche AF, Giannoudis PV, Matthews SJE, Smith RM (2003) Spontaneous healing of a 14 cm diaphyseal cortical defect of the tibia. Injury 34:385–388

    Article  CAS  PubMed  Google Scholar 

  5. Bumbasirevic M, Stevanovic M, Bumbasirevic V, Lesic A, Atkinson HD (2014) Free vascularised fibular grafts in orthopaedics. Int Orthop 38:1277–1282

    Article  PubMed  Google Scholar 

  6. Ilizarov GA (1992) The replacement of long tubular bone defects by lengthening distraction osteotomy of one of the fragments. 1969. Clin Orthop Relat Res 280:7–10

    PubMed  Google Scholar 

  7. Gubin AV, Borzunov DY, Malkova TA (2013) The Ilizarov paradigm: thirty years with the Ilizarov method, current concerns and future research. Int Orthop 37:1533–1539

    Article  PubMed Central  PubMed  Google Scholar 

  8. Paley D, Maar DC (2000) Ilizarov bone transport treatment for tibial defects. J Orthop Trauma 14:76–85

    Article  CAS  PubMed  Google Scholar 

  9. Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–59

    Article  CAS  PubMed  Google Scholar 

  10. Ronca A, Guarino V, Raucci MG, Salamanna F, Martini L, Zeppetelli S, Fini M, Kon E, Filardo G, Marcacci M, Ambrosio L (2014) Large defect-tailored composite scaffolds for in vivo bone regeneration. J Biomater Appl 29:715–727

    Article  CAS  PubMed  Google Scholar 

  11. Tiedeman JJ, Garvin KL, Kile TA, Connolly JF (1995) The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 18:1153–1158

    CAS  PubMed  Google Scholar 

  12. Gao TJ, Lindholm TS, Kommonen B, Ragni P, Paronzini A, Lindholm TC, Jalovaara P, Urist MR (1997) The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep. Int Orthop 21:194–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Leijten J, Chai YC, Papantoniou I, Geris L, Schrooten J, Luyten FP (2014) Cell based advanced therapeutic medicinal products for bone repair: keep it simple? Adv Drug Deliv Rev. doi:10.1016/j.addr.2014.10.025

    PubMed  Google Scholar 

  14. Moreira Teixeira LS, Patterson J, Luyten FP (2014) Skeletal tissue regeneration: where can hydrogels play a role? Int Orthop 38:1861–1876

    Article  PubMed  Google Scholar 

  15. Chai YC, Kerckhofs G, Roberts SJ, Van Bael S, Schepers E, Vleugels J, Luyten FP, Schrooten J (2012) Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition. Biomaterials 33:4044–4058

    Article  CAS  PubMed  Google Scholar 

  16. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–955

    Article  CAS  PubMed  Google Scholar 

  17. Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin N Am 41:27–37

    Article  Google Scholar 

  18. Aurégan JC, Bégué T (2014) Induced membrane for treatment of critical sized bone defect: a review of experimental and clinical experiences. Int Orthop 38:1971–1978

    Article  PubMed  Google Scholar 

  19. Hinsenkamp M, Collard JF (2015) Growth factors in orthopaedic surgery: demineralized bone matrix versus recombinant bone morphogenetic proteins. Int Orthop 39:137–147

    Article  PubMed  Google Scholar 

  20. Fassbender M, Minkwitz S, Thiele M, Wildemann B (2014) Efficacy of two different demineralised bone matrix grafts to promote bone healing in a critical-size-defect: a radiological, histological and histomorphometric study in rat femurs. Int Orthop 38:1963–1969

    Article  PubMed  Google Scholar 

  21. Donegan DJ, Scolaro J, Matuszewski PE, Mehta S (2011) Staged bone grafting following placement of an antibiotic spacer block for the management of segmental long bone defects. Orthopedics 34:e730–e735

    PubMed  Google Scholar 

  22. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–S6

    Article  Google Scholar 

  23. Zhu W, Xiao J, Wang D, Liu J, Xiong J, Liu L, Zhang X, Zeng Y (2009) Experimental study of nano-HA artificial bone with different pore sizes for repairing the radial defect. Int Orthop 33:567–571

    Article  PubMed Central  PubMed  Google Scholar 

  24. Deng M, Zhang B, Wang K, Liu F, Xiao H, Zhao J, Liu P, Li Y, Lin F, Wang Y (2011) Mechano growth factor E peptide promotes osteoblasts proliferation and bone-defect healing in rabbits. Int Orthop 35:1099–1106

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tölli H, Kujala S, Jämsä T, Jalovaara P (2011) Reindeer bone extract can heal the critical-size rat femur defect. Int Orthop 35:615–622

    Article  PubMed Central  PubMed  Google Scholar 

  26. Vukicevic S, Oppermann H, Verbanac D, Jankolija M, Popek I, Curak J, Brkljacic J, Pauk M, Erjavec I, Francetic I, Dumic-Cule I, Jelic M, Durdevic D, Vlahovic T, Novak R, Kufner V, Bordukalo Niksic T, Kozlovic M, Banic Tomisic Z, Bubic-Spoljar J, Bastalic I, Vikic-Topic S, Peric M, Pecina M, Grgurevic L (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38:635–647

    Article  PubMed Central  PubMed  Google Scholar 

  27. Peric M, Dumic-Cule I, Grcevic D, Matijasic M, Verbanac D, Paul R, Grgurevic L, Trkulja V, Bagi CM, Vukicevic S (2015) The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 70:73–86

    Article  CAS  PubMed  Google Scholar 

  28. Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, Schütz MA, Duda GN, Schell H, van Griensven M, Redl H, Hutmacher DW (2009) The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 30:2149–2163

    Article  CAS  PubMed  Google Scholar 

  29. Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3:1–8

    PubMed  Google Scholar 

  30. Hernigou P, Desroches A, Queinnec S, Flouzat Lachaniette CH, Poignard A, Allain J, Chevallier N, Rouard H (2014) Morbidity of graft harvesting versus bone marrow aspiration in cell regenerative therapy. Int Orthop 38:1855–1860

    Article  PubMed  Google Scholar 

  31. Hernigou P (2015) Bone transplantation and tissue engineering, part III: allografts, bone grafting and bone banking in the twentieth century. Int Orthop. doi:10.1007/s00264-015-2669-y

    Google Scholar 

  32. Sassard WR, Eidman DK, Gray PM, Block JE, Russo R, Russell JL, Taboada EM (2000) Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics 23:1059–1064

    CAS  PubMed  Google Scholar 

  33. Stafford PR, Norris BL (2010) Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 41(Suppl 2):S72–S77

    Article  PubMed  Google Scholar 

  34. Porter RM, Liu F, Pilapil C, Betz OB, Vrahas MS, Harris MB, Evans CH (2009) Osteogenic potential of reamer irrigator aspirator (RIA) aspirate collected from patients undergoing hip arthroplasty. J Orthop Res 27:42–49

    Article  PubMed Central  PubMed  Google Scholar 

  35. Miller MA, Ivkovic A, Porter R, Harris MB, Estok DM 2nd, Smith RM, Evans CH, Vrahas MS (2011) Autologous bone grafting on steroids: preliminary clinical results. A novel treatment for nonunions and segmental bone defects. Int Orthop 35:599–605

    Article  PubMed Central  PubMed  Google Scholar 

  36. Martinovic S, Borovecki F, Miljavac V, Kisic V, Maticic D, Francetic I, Vukicevic S (2006) Requirement of a bone morphogenetic protein for the maintenance and stimulation of osteoblast differentiation. Arch Histol Cytol 69:23–36

    Article  CAS  PubMed  Google Scholar 

  37. Dumic-Cule I, Brkljacic J, Rogic D, Bordukalo Niksic T, Tikvica Luetic A, Draca N, Kufner V, Trkulja V, Grgurevic L, Vukicevic S (2014) Systemically available bone morphogenetic protein two and seven affect bone metabolism. Int Orthop 38:1979–1985

    Article  PubMed  Google Scholar 

  38. Patterson TE, Kumagai K, Griffith L, Muschler GF (2008) Cellular strategies for enhancement of fracture repair. J Bone Joint Surg Am 90(Suppl 1):111–119

    Article  PubMed  Google Scholar 

  39. Stangenberg L, Schaefer DJ, Buettner O, Ohnolz J, Möbest D, Horch RE, Stark GB, Kneser U (2005) Differentiation of osteoblasts in three-dimensional culture in processed cancellous bone matrix: quantitative analysis of gene expression based on real-time reverse transcription-polymerase chain reaction. Tissue Eng 11:855–864

    Article  CAS  PubMed  Google Scholar 

  40. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294

    Article  CAS  PubMed  Google Scholar 

  41. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684

    Article  CAS  PubMed  Google Scholar 

  42. Kitoh H, Kawasumi M, Kaneko H, Ishiguro N (2009) Differential effects of culture-expanded bone marrow cells on the regeneration of bone between the femoral and the tibial lengthenings. J Pediatr Orthop 29:643–649

    Article  PubMed  Google Scholar 

  43. Kitoh H, Kitakoji T, Tsuchiya H, Katoh M, Ishiguro N (2007) Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones. Bone 40:522–528

    Article  PubMed  Google Scholar 

  44. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87:1430–1437

    Article  PubMed  Google Scholar 

  45. Léotot J, Lebouvier A, Hernigou P, Bierling P, Rouard H, Chevallier N (2014) Bone-forming capacity and biodistribution of bone marrow-derived stromal cells directly loaded into scaffolds: a novel and easy approach for clinical application of bone regeneration. Cell Transplant. doi:10.3727/096368914X685276

  46. Hernigou P, Pariat J, Queinnec S, Homma Y, Flouzat Lachaniette CH, Chevallier N, Rouard H (2014) Supercharging irradiated allografts with mesenchymal stem cells improves acetabular bone grafting in revision arthroplasty. Int Orthop 38:1913–1921

    Article  PubMed  Google Scholar 

  47. Hermann PC, Huber SL, Herrler T, von Hesler C, Andrassy J, Kevy SV, Jacobson MS, Heeschen C (2008) Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. Cell Transplant 16:1059–1069

    Article  PubMed  Google Scholar 

  48. Hendrich C, Franz E, Waertel G, Krebs R, Jäger M (2009) Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. Orthop Rev (Pavia) 1:e32

    Article  Google Scholar 

  49. Gessmann J, Köller M, Godry H, Schildhauer TA, Seybold D (2012) Regenerate augmentation with bone marrow concentrate after traumatic bone loss. Orthop Rev (Pavia) 4:e14

    Article  PubMed Central  Google Scholar 

  50. Petri M, Namazian A, Wilke F, Ettinger M, Stübig T, Brand S, Bengel F, Krettek C, Berding G, Jagodzinski M (2013) Repair of segmental long-bone defects by stem cell concentrate augmented scaffolds: a clinical and positron emission tomography–computed tomography analysis. Int Orthop 37:2231–2237

    Article  PubMed Central  PubMed  Google Scholar 

  51. Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C, Hendrich C, Krauspe R (2011) Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 29:173–180

    Article  PubMed  Google Scholar 

  52. The BMP2 Evaluation in Surgery for Tibial Trauma (BESTT) Study Group, Govender S, Csimma C, Genant HK, Valentin-Orpan A (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of 450 patients. J Bone Joint Surg-Am 84-A:2123–2134

    Google Scholar 

  53. Pecina M, Vukicevic S (2007) Biological aspects of bone, cartilage and tendon regeneration. Int Orthop 31:719–720

    Article  PubMed Central  PubMed  Google Scholar 

  54. Pecina M, Haspl M, Jelic M, Vukicevic S (2003) Repair of a resistant tibial non-union with a recombinant bone morphogenetic protein-7 (rhBMP-7). Int Orthop 27:320–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Bishop GB, Einhorn TA (2007) Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop 31:721–727

    Article  PubMed Central  PubMed  Google Scholar 

  56. Courvoisier A, Sailhan F, Laffenêtre O, Obert L; French Study Group of BMP in Orthopedic Surgery (2014) Bone morphogenetic protein and orthopaedic surgery: can we legitimate its off-label use? Int Orthop 38:2601–2605

    Article  Google Scholar 

  57. Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, Pollak AN, Golden JD, Valentin-Opran A (2006) BMP-2 Evaluation in Surgery for Tibial Trauma-Allgraft (BESTT-ALL) Study Group, Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am 88:1431–1441

    Article  PubMed  Google Scholar 

  58. Geesink RG, Hoefnagels NH, Bulstra SK (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg (Br) 81:710–718

    Article  CAS  Google Scholar 

  59. Pecina M, Giltaij LR, Vukicevic S (2001) Orthopaedic applications of osteogenic protein-1 (BMP-7). Int Orthop 25:203–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Bilic R, Simic P, Jelic M, Stern-Padovan R, Dodig D, Pompe van Meerdervoort H, Martinovic S, Ivankovic D, Pecina M, Vukicevic S (2006) Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis. Int Orthop 30:128–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Anticevic D, Jelic M, Vukicevic S (2006) Treatment of a congenital pseudarthrosis of the tibia by osteogenic protein-1 (bone morphogenetic protein-7): a case report. J Pediatr Orthop B 15:220–221

    Article  PubMed  Google Scholar 

  62. Das SP, Ganesh S, Pradhan S, Singh D, Mohanty RN (2014) Effectiveness of recombinant human bone morphogenetic protein-7 in the management of congenital pseudoarthrosis of the tibia: a randomised controlled trial. Int Orthop 38:1987–1992

    Article  PubMed  Google Scholar 

  63. Soballe K, Hansen ES, B-Rasmussen H, Pedersen CM, Bunger C (1992) Bone graft incorporation around titanium alloy and hydroxyapatite coated implants in dogs. Clin Orthop 274:282–293

    PubMed  Google Scholar 

  64. Vukicevic S, Grgurevic L (2009) BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev 20:441–448

    Article  CAS  PubMed  Google Scholar 

  65. Simic P, Culej JB, Orlic I, Grgurevic L, Draca N, Spaventi R, Vukicevic S (2006) Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem 281:25509–25521

    Article  CAS  PubMed  Google Scholar 

  66. Song K, Krause C, Shi S, Patterson M, Suto R, Grgurevic L, Vukicevic S, van Dinther M, Falb D, Ten Dijke P, Alaoui-Ismaili MH (2010) Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity. J Biol Chem 285:12169–12180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Allendorph GP, Isaacs MJ, Kawakami Y, Belmonte JC, Choe S (2007) BMP-3 and BMP-6 structures illuminate the nature of binding specificity with receptors. Biochemistry 46:12238–12247

    Article  CAS  PubMed  Google Scholar 

  68. Sieber C, Schwaerzer GK, Knaus P (2008) Bone morphogenetic protein signaling is fine-tuned on multiple levels. In: Vukicevic S, Sampath TK (eds) Bone morphogenetic proteins: from local to systemic therapeutics. Birkauser, Basel, pp 81–114

    Chapter  Google Scholar 

  69. Korchynskyi O, van Bezooijen RL, Lowik CWGM, ten Dijke P (2004) Bone morpho- genetic protein receptors and their nuclear effectors in bone formation. In: Vukicevic S, Sampath TK (eds) Bone morphogenetic proteins: regeneration of bone and beyond. Birkauser, Basel, pp 9–114

    Chapter  Google Scholar 

  70. Saremba S, Nickel J, Seher A, Kotzsch A, Sebald W, Mueller TD (2008) Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand. FEBS J 275:172–183

    Article  CAS  PubMed  Google Scholar 

  71. Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, Helfand M (2013) Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spinal fusion: a systematic review and meta-analysis. Ann Intern Med 158:890–902

    Article  PubMed  Google Scholar 

  72. Simmonds MC, Brown JV, Heirs MK, Higgins JP, Mannion RJ, Rodgers MA, Stewart LA (2013) Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: a meta-analysis of individual-participant data. Ann Intern Med 158:877–889

    Article  PubMed  Google Scholar 

  73. Minear S, Leucht P, Miller S, Helms JA (2010) rBMP represses Wnt signaling and influences skeletal progenitor cell fate specification during bone repair. J Bone Miner Res 25:1196–1207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, Toyama Y, Yabe Y, Kumegawa M, Hakeda Y (2000) Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 27:479–486

    Article  CAS  PubMed  Google Scholar 

  75. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  CAS  PubMed  Google Scholar 

  76. Little DG, McDonald M, Bransford R, Godfrey CB, Amanat N (2005) Manipulation of the anabolic and catabolic responses with OP-1 and zoledronic acid in a rat critical defect model. J Bone Miner Res 20:2044–2052

    Article  CAS  PubMed  Google Scholar 

  77. Pećina M, Vukičević S (2014) Tissue engineering and regenerative orthopaedics (TERO). Int Orthop 38:1757–1760

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement no. HEALTH-F4-2011-279239. This work has also been supported in part by the Croatian Science Foundation project 08/5 BONE6-BIS.

Conflict of interest

M. Jankolija and I.P. are employees of Genera Research. S.V. is the founder of Genera Research. I.D.C., M.P., M. Jelic and L.G. declare that they have no conflict of interest and certify that they have no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing, arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slobodan Vukicevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumic-Cule, I., Pecina, M., Jelic, M. et al. Biological aspects of segmental bone defects management. International Orthopaedics (SICOT) 39, 1005–1011 (2015). https://doi.org/10.1007/s00264-015-2728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2728-4

Keywords

Navigation