Skip to main content

Advertisement

Log in

Induced membrane for treatment of critical sized bone defect: a review of experimental and clinical experiences

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to review experimental and clinical experiences about the use of an induced membrane to address critical bone size defect of the limbs.

Methods

From a review of published experimental and clinical data and from our clinical experience, we present the key data about the use of an induced membrane to address critical bone size defect of the limbs.

Results

After reviewing the concept of critical sized bone defect, we present the different indications of an induced membrane, the key points of the surgical technique and the strategy of bone grafting given the indication, localization and importance of the critical sized bone defect. Finally, we discuss the perspective of the use of an induced membrane with various bone substitutes.

Conclusions

The use of an induced membrane to treat critical sized bone defects of the limbs is a simple, reliable and reproducible technique. Certain technical steps should be pointed out and observed with great caution in order to avoid any pitfalls. This technique will probably be a key step for facilitating bone inclusion of new bone substitutes proposed by recent bioengineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lasanianos NG, Kanakaris NK, Giannoudis PV (2010) Current management of long bone large segmental defects. Orthop Trauma 24(2):149–163

    Article  Google Scholar 

  2. Papineau LJ (1973) Excision-graft with deliberately delayed closing in chronic osteomyelitis. Nouv Presse Med 2(41):2753–2755

    CAS  PubMed  Google Scholar 

  3. Osterman AL, Bora FW (1984) Free vascularized bone grafting for large-gap nonunion of long bones. Orthop Clin North Am 15(1):131–142

    CAS  PubMed  Google Scholar 

  4. Aronson J, Johnson E, Harp JH (1989) Local bone transportation for treatment of intercalary defects by the Ilizarov technique. Biomechanical and clinical considerations. Clin Orthop Relat Res 243:71–79

    PubMed  Google Scholar 

  5. Masquelet AC, Fitoussi F, Begue T, Muller GP (2000) Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 45(3):346–353

    CAS  PubMed  Google Scholar 

  6. Masquelet AC, Bégué T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 41(1):27–37

    Article  PubMed  Google Scholar 

  7. Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22(1):73–79

    Article  CAS  PubMed  Google Scholar 

  8. Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1:60–68

    Article  CAS  PubMed  Google Scholar 

  9. Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:299–308

    PubMed  Google Scholar 

  10. Wiese A, Pape HC (2010) Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin North Am 41:1–4

    Article  PubMed  Google Scholar 

  11. Giannoudis PV et al (2011) Masquelet technique for the treatment of bone defects: tips- tricks and future directions. Injury 42:591–598

    Article  PubMed  Google Scholar 

  12. Viateau V, Guillemin G, Bousson V, Oudina K, Hannouche D, Sedel L, Logeart-Avramoglou D, Petite H (2007) Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. J Orthop Res 25(6):741–749

    Article  PubMed  Google Scholar 

  13. Pelissier P, Martin D, Baudet J, Lepreux S, Masquelet AC (2002) Behaviour of cancellous bone graft placed in induced membranes. Br J Plast Surg 55(7):596–598

    Article  PubMed  Google Scholar 

  14. Masquelet AC (2003) Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg 388(5):344–346

    Article  CAS  PubMed  Google Scholar 

  15. Biau DJ, Pannier S, Masquelet AC, Glorion C (2009) Case report: reconstruction of a 16-cm diaphyseal defect after Ewing’s resection in a child. Clin Orthop Relat Res 467(2):572–577

    Article  PubMed Central  PubMed  Google Scholar 

  16. Apard T, Bigorre N, Cronier P, Duteille F, Bizot P, Massin P (2010) Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res 96(5):549–553

    Article  CAS  PubMed  Google Scholar 

  17. Villemagne T, Bonnard C, Accadbled F, L’kaissi M, de Billy B, Sales de Gauzy J (2011) Intercalary segmental reconstruction of long bones after malignant bone tumor resection using primary methyl methacrylate cement spacer interposition and secondary bone grafting: the induced membrane technique. J Pediatr Orthop 31(5):570–576

    Article  PubMed  Google Scholar 

  18. Zappaterra T, Ghislandi X, Adam A, Huard S, Gindraux F, Gallinet D, Lepage D, Garbuio P, Tropet Y, Obert L (2011) Induced membrane technique for the reconstruction of bone defects in upper limb. A prospective single center study of nine cases. Chir Main 30(4):255–263

    Article  CAS  PubMed  Google Scholar 

  19. Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet AC; French Society of Orthopaedic Surgery and Traumatology (SoFCOT) (2012) Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res 98(1):97–102

    Article  Google Scholar 

  20. Sales de Gauzy J, Fitoussi F, Jouve JL, Karger C, Badina A, Masquelet AC; French Society of Orthopaedic Surgery and Traumatology (SoFCOT) (2012) Traumatic diaphyseal bone defects in children. Orthop Traumatol Surg Res 98(2):220–226

    Article  Google Scholar 

  21. Aho OM, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskelä HV (2013) The mechanism of action of induced membranes in bone repair. J Bone Joint Surg Am 95(7):597–604

    Article  PubMed  Google Scholar 

  22. Pannier S, Pejin Z, Dana C, Masquelet AC, Glorion C (2013) Induced membrane technique for the treatment of congenital pseudarthrosis of the tibia: preliminary results of five cases. J Child Orthop 7(6):477–485

    Article  PubMed  Google Scholar 

  23. Accadbled F, Mazeau P, Chotel F, Cottalorda J, Sales de Gauzy J, Kohler R (2013) Induced-membrane femur reconstruction after resection of bone malignancies: three cases of massive graft resorption in children. Orthop Traumatol Surg Res 99(4):479–483

    Article  CAS  PubMed  Google Scholar 

  24. Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R (2011) Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42(6):591–598

    Article  PubMed  Google Scholar 

  25. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–S6

    Article  Google Scholar 

  26. Giannoudis PV, Tzioupis C, Green J (2009) Surgical techniques: how I do it? The reamer/irrigator/aspirator (RIA) system. Injury 40(11):1231–1236

    Article  CAS  PubMed  Google Scholar 

  27. Miller MA, Ivkovic A, Porter R, Harris MB, Estok DM 2nd, Smith RM, Evans CH, Vrahas MS (2011) Autologous bone grafting on steroids: preliminary clinical results. A novel treatment for nonunions and segmental bone defects. Int Orthop 35(4):599–605

    Article  PubMed Central  PubMed  Google Scholar 

  28. Vukicevic S, Oppermann H, Verbanac D, Jankolija M, Popek I, Curak J, Brkljacic J, Pauk M, Erjavec I, Francetic I, Dumic-Cule I, Jelic M, Durdevic D, Vlahovic T, Novak R, Kufner V, Bordukalo Niksic T, Kozlovic M, Banic Tomisic Z, Bubic-Spoljar J, Bastalic I, Vikic-Topic S, Peric M, Pecina M, Grgurevic L (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38(3):635–647

    Article  PubMed  Google Scholar 

  29. Goshima J, Goldberg VM, Caplan AI (1991) Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 12:253–258

    Article  CAS  PubMed  Google Scholar 

  30. Manassero M, Viateau V, Deschepper M, Oudina K, Logeart-Avramoglou D, Petite H, Bensidhoum M (2013) Bone regeneration in sheep using acropora coral, a natural resorbable scaffold, and autologous mesenchymal stem cells. Tissue Eng Part A 19(13–14):1554–1563

    Article  CAS  PubMed  Google Scholar 

  31. Bensaid W et al (2005) De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue Eng 11:814–824

    Article  CAS  PubMed  Google Scholar 

  32. Bruder SP et al (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–996

    CAS  PubMed  Google Scholar 

  33. Gao TJ et al (1997) Stabilization of an inserted tricalcium phosphate spacer enhances the healing of a segmental tibial defect in sheep. Arch Orthop Trauma Surg 116:290–294

    Article  CAS  PubMed  Google Scholar 

  34. Gao TJ et al (1997) The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep. Int Orthop 21:194–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Petite H et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963

    Article  CAS  PubMed  Google Scholar 

  36. Viateau V et al (2010) Use of the induced membrane technique for bone tissue engineering purposes: animal studies. Orthop Clin North Am 41:49–56

    Article  PubMed  Google Scholar 

  37. Viateau V, Manassero M, Sensébé L, Langonné A, Marchat D, Logeart-Avramoglou D, Petite H, Bensidhoum M (2013) Comparative study of the osteogenic ability of four different ceramic constructs in an ectopic large animal model. J Tissue Eng Regen Med. doi:10.1002/term.1782

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest regarding the subject of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Aurégan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aurégan, JC., Bégué, T. Induced membrane for treatment of critical sized bone defect: a review of experimental and clinical experiences. International Orthopaedics (SICOT) 38, 1971–1978 (2014). https://doi.org/10.1007/s00264-014-2422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2422-y

Keywords

Navigation