Skip to main content
Log in

The Ilizarov paradigm: thirty years with the Ilizarov method, current concerns and future research

  • Review Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

The Ilizarov method of bone lengthening, reconstruction and osteosynthesis has developed immensely since its introduction by G.A. Ilizarov in the Soviet Union in the 1960s and in the Western countries in the early 1980s. It has become an integral part of the arsenal used by the orthopaedic community worldwide. The evolutionary development of the method and its current role has considerably improved the quality of life for millions of people around the whole world. Despite the great versatility of its possible applications for bone injuries and diseases, the Ilizarov method could not and cannot be the alternative to a range of other methods that are applied for some specific bone conditions, but rather is a method of choice. Its combination with the current methods of internal fixation or the means of internal fixation that use the biological principles that were laid down by G.A. Ilizarov have demonstrated the importance of tension stress, blood supply, functional loading, and fragment control during bone treatment. The objective of this study was to present an overview of the current state and concerns in the application of the Ilizarov method and define the prospective research trends aimed at regeneration stimulation, better control of treatment, infection barriers and patient comfort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part I: the influence of stability of fixation and soft-tissue preservation. Clin Orthop 238:249–281

    PubMed  Google Scholar 

  2. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part II. The influence of the rate and frequency of distraction. Clin Orthop 239:263–285

    PubMed  Google Scholar 

  3. Ilizarov GA (1992) The tension stress effect on the genesis and growth of tissues. The influence of blood supply and loading upon the shape-forming processes in bone and joints. In: SA Green (ed) The transosseous osteosynthesis. Theoretical and clinical aspects of the regeneration and growth of tissue. Springer, Berlin Heidelberg, pp 137–257

    Google Scholar 

  4. Spiegelberg B, Parratt T, Dheerendra SK, Khan WS, Jennings R, Marsh DR (2010) Ilizarov principles of deformity correction. Ann R Coll Surg Engl 92(2):101–105

    Article  PubMed  CAS  Google Scholar 

  5. Gessmann J, Baecker H, Jettkant B, Muhr G, Seybold D (2011) Direct and indirect loading of the Ilizarov external fixator: the effect on the interfragmentary movements and compressive loads. Strategies Trauma Limb Reconstr 6(1):27–31. doi:10.1007/s11751-011-0103-6

    Article  PubMed  Google Scholar 

  6. Catagni MA, Guerreschi F, Lovisetti L (2011) Distraction osteogenesis for bone repair in the 21st century: lessons learned. Injury 42(6):580–586

    Article  PubMed  Google Scholar 

  7. Birch JG, Samchukov ML (2004) Use of the Ilizarov method to correct lower limb deformities in children and adolescents. J Am Acad Orthop Surg 12(3):144–154

    PubMed  Google Scholar 

  8. Paloski M, Taylor BC, Iobst C, Pugh KJ (2012) Pediatric and adolescent applications of the Taylor Spatial Frame. Orthopedics 35(6):518–527

    Article  PubMed  Google Scholar 

  9. Rozbruch SR, Segal K, Ilizarov S, Fragomen AT, Ilizarov G (2010) Does the Taylor Spatial Frame accurately correct tibial deformities? Clin Orthop Relat Res 468(5):1352–1361

    Article  PubMed  Google Scholar 

  10. Dammerer D, Kirschbichler K, Donnan L, Kaufmann G, Krismer M, Biedermann R (2011) Clinical value of the Taylor Spatial Frame: a comparison with the Ilizarov and Orthofix fixators. J Child Orthop 5(5):343–349

    Article  PubMed  CAS  Google Scholar 

  11. Yang L, Nayagam S, Saleh M (2003) Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech (Bristol, Avon) 18(2):166–172

    Article  Google Scholar 

  12. Baumgart R, Betz A, Schweiberer L (1997) A fully implantable motorized intramedullary nail for limb lengthening and bone transport. Clin Orthop Relat Res 343:135–143

    Article  PubMed  Google Scholar 

  13. Krieg AH, Lenze U, Speth BM, Hasler CC (2011) Intramedullary leg lengthening with a motorized nail. Acta Orthop 82(3):344–350

    Article  PubMed  Google Scholar 

  14. Sawaizumi T, Ito H (2003) Lengthening of the amputation stumps of the distal phalanges using the modified Ilizarov method. J Hand Surg Am 28(2):316–322

    Article  PubMed  Google Scholar 

  15. Kocaoglu M, Eralp L, Bilen FE, Balci HI (2009) Fixator-assisted acute femoral deformity correction and consecutive lengthening over an intramedullary nail. J Bone Joint Surg Am 91(1):152–159

    Article  PubMed  Google Scholar 

  16. Kim H, Lee SK, Kim KJ, Ahn JH, Choy WS, Kim YI, Koo JY (2009) Tibial lengthening using a reamed type intramedullary nail and an Ilizarov external fixator. Int Orthop 33(3):835–841

    Article  PubMed  Google Scholar 

  17. Sun XT, Easwar TR, Manesh S, Ryu JH, Song SH, Kim SJ, Song HR (2010) Complications and outcome of tibial lengthening using the Ilizarov method with or without a supplementary intramedullary nail: a case-matched comparative study. J Bone Joint Surg Br 93(6):782–787

    Google Scholar 

  18. Chen D, Chen J, Jiang Y, Liu F (2011) Tibial lengthening over humeral and tibial intramedullary nails in patients with sequelae of poliomyelitis: a comparative study. Int Orthop 35(6):935–940

    Article  PubMed  Google Scholar 

  19. Schmal H, Strohm PC, Jaeger M, Südkamp NP (2011) Flexible fixation and fracture healing: do locked plating ‘internal fixators’ resemble external fixators? J Orthop Trauma 25(Suppl 1):S15–S20

    Article  PubMed  Google Scholar 

  20. Papanna MC, Monga P, Al-Hadithy N, Wilkes RA (2011) Promises and difficulties with the use of femoral intra-medullary lengthening nails to treat limb length discrepancies. Acta Orthop Belg 77(6):788–794

    PubMed  Google Scholar 

  21. Wang K, Edwards E (2012) Intramedullary skeletal kinetic distractor in the treatment of leg length discrepancy-a review of 16 cases and analysis of complications. J Orthop Trauma 26(9):e138–e144

    Article  PubMed  Google Scholar 

  22. Burghardt RD, Herzenberg JE (2010) Temporary hemiepiphysiodesis with the eight-Plate for angular deformities: mid-term results. J Orthop Sci 15(5):699–704

    Article  PubMed  Google Scholar 

  23. Marchac A, Arnaud E (2012) Cranium and midface distraction osteogenesis: current practices, controversies, and future applications. J Craniofac Surg 23(1):235–238

    Article  PubMed  Google Scholar 

  24. Monticelli G, Spinelli R (1981) Limb lengthening by epiphyseal distraction. Int Orthop 5(2):85–90

    Article  PubMed  CAS  Google Scholar 

  25. Monticelli G, Spinelli R (1983) Leg lengthening by closed metaphyseal corticotomy. Ital J Orthop Traumatol 9(2):139–150

    PubMed  CAS  Google Scholar 

  26. Bianchi Maiocchi A (1997) Historical review of the method according to Ilizarov. 15 years after its worldwide application. Bull Hosp Jt Dis 56(1):16–18

    PubMed  CAS  Google Scholar 

  27. Atesalp AS, Basbozkurt M, Erler E, Sehirlioğlu A, Tunay S, Solakoğlu C, Gür E (1998) Treatment of tibial bone defects with the Ilizarov circular external fixator in high-velocity gunshot wounds. Int Orthop 22(6):343–347

    Article  PubMed  CAS  Google Scholar 

  28. Hosny G, Fadel M (2003) Ilizarov external fixator for open fractures of the tibial shaft. Int Orthop 27(5):303–306

    Article  PubMed  CAS  Google Scholar 

  29. Wani N, Baba A, Kangoo K, Mir M (2011) Role of early Ilizarov ring fixator in the definitive management of type II, IIIA and IIIB open tibial shaft fractures. Int Orthop 35(6):915–923

    Article  PubMed  Google Scholar 

  30. Wardak M, Wardak E, Goel A (2008) Calcanisation of tibia using Ilizarov fixator in crush injuries of hindfoot: a new method. Int Orthop 32(6):779–784

    Article  PubMed  Google Scholar 

  31. El-Sayed MM, Correll J, Pohlig K (2010) Limb sparing reconstructive surgery and Ilizarov lengthening in fibular hemimelia of Achterman-Kalamchi type II patients. J Pediatr Orthop B 19(1):55–60

    Article  PubMed  Google Scholar 

  32. Hollenbeck ST, Woo S, Ong S, Fitch RD, Erdmann D, Levin LS (2009) The combined use of the Ilizarov method and microsurgical techniques for limb salvage. Ann Plast Surg 62(5):486–491

    Article  PubMed  CAS  Google Scholar 

  33. Lovisetti G, Sala F, Thabet AM, Catagni MA, Singh S (2011) Osteocutaneous thermal necrosis of the leg salvaged by TSF/Ilizarov reconstruction. Report of 7 patients. Int Orthop 35(1):121–126

    Article  PubMed  Google Scholar 

  34. Borzunov DY, Chevardin AV (2013) Ilizarov non-free bone plasty for extensive tibial defects. Int Orthop 37(4):709–714

    Article  PubMed  Google Scholar 

  35. El-Mowafi H, El-Alfy B, Refai M (2009) Functional outcome of salvage of residual and recurrent deformities of clubfoot with Ilizarov technique. Foot Ankle Surg 15(1):3–6

    Article  PubMed  Google Scholar 

  36. Makhdoom A, Qureshi PA, Jokhio MF, Siddiqui KA (2012) Resistant clubfoot deformities managed by Ilizarov distraction histogenesis. Indian J Orthop 46(3):326–332

    Article  PubMed  Google Scholar 

  37. Agashe MV, Song SH, Refai MA, Park KW, Song HR (2012) Congenital pseudarthrosis of the tibia treated with a combination of Ilizarov’s technique and intramedullary rodding. Acta Orthop 83(5):515–522

    Article  PubMed  Google Scholar 

  38. Guo Q, Zhang T, Zheng Y, Feng S, Ma X, Zhao F (2012) Tibial lengthening over an intramedullary nail in patients with short stature or leg-length discrepancy: a comparative study. Int Orthop 36(1):179–184

    Article  PubMed  Google Scholar 

  39. Harbacheuski R, Fragomen AT, Rozbruch SR (2012) Does lengthening and then plating (LAP) shorten duration of external fixation? Clin Orthop Relat Res 470(6):1771–1781

    Article  PubMed  Google Scholar 

  40. El Barbary H, Abdel Ghani H, Misbah H, Salem K (2005) Complex tibial plateau fractures treated with Ilizarov external fixator with or without minimal internal fixation. Int Orthop 29(3):182–185

    Article  PubMed  Google Scholar 

  41. Shilt JS, Deeney VF, Quinn CO (2000) The effect of increased distraction frequency on soft tissues during limb lengthening in an animal model. J Pediatr Orthop 20(2):146–150

    PubMed  CAS  Google Scholar 

  42. Shetsov VI, Popkov AV (2002) Limb lengthening in automatic mode. Ortop Traumatol Rehabil 4(4):403–412

    PubMed  Google Scholar 

  43. Shevtsov V, Popkov A, Popkov D, Prévot J (2001) Reduction of the period of treatment for leg lengthening. Technique and advantages. Rev Chir Orthop Reparatrice Appar Mot 87(3):248–256 (in French)

    PubMed  CAS  Google Scholar 

  44. Paevskiĭ SA (1993) A means for determining the bactericidal activity of the tissues during the treatment of orthopedic patients by transosseous osteosynthesis methods. Klin Lab Diagn 5:25–29 (in Russian)

    PubMed  Google Scholar 

  45. Naumenko ZS, Rozova LV, Kliushin NM (2003) Dynamics of antibiotic resistance of Staphylococcus aureus isolated from chronic osteomyelitis patients. Zh Mikrobiol Epidemiol Immunobiol 2:70–72 (in Russian)

    PubMed  Google Scholar 

  46. Antoci V, Ono CM, Antoci V Jr, Raney EM (2008) Pin-tract infection during limb lengthening using external fixation. Am J Orthop (Belle Mead NJ) 37(9):E150–E154

    Google Scholar 

  47. Cavusoglu AT, Er MS, Inal S, Ozsoy MH, Dincel VE, Sakaogullari A (2009) Pin site care during circular external fixation using two different protocols. J Orthop Trauma 23(10):724–730

    Article  PubMed  Google Scholar 

  48. Catagni MA, Ottaviani G, Combi A, Elhence A (2006) External circular fixation: a comparison of infection rates between wires and conical half-pins with threads outside or inside the skin. J Trauma 61(5):1186–1191

    Article  PubMed  Google Scholar 

  49. Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res 250:8–26

    PubMed  Google Scholar 

  50. Cattaneo R, Villa A, Catagni M, Tentori L (1985) Treatment of septic or non-septic diaphyseal pseudoarthroses by Ilizarov’s monofocal compression method. Rev Chir Orthop Reparatrice Appar Mot 71(4):223–229 (in French)

    PubMed  CAS  Google Scholar 

  51. Schwartsman V, Schwartsman R (1992) Corticotomy. Clin Orthop Relat Res 280:37–47

    PubMed  Google Scholar 

  52. Matsushita T, Watanabe Y (2007) Chipping and lengthening technique for delayed unions and nonunions with shortening or bone loss. J Orthop Trauma 21(6):404–406

    Article  PubMed  Google Scholar 

  53. Thabet AM, Paley D, Kocaoglu M, Eralp L, Herzenberg JE, Ergin ON (2008) Periosteal grafting for congenital pseudarthrosis of the tibia: a preliminary report. Clin Orthop Relat Res 466(12):2981–2994

    Article  PubMed  Google Scholar 

  54. Emara KM, Ghafar KA, Al Kersh MA (2011) Methods to shorten the duration of an external fixator in the management of tibial infections. World J Orthop 2(9):85–92

    Article  PubMed  Google Scholar 

  55. Einhorn TA, Lee CA (2001) Bone regeneration: new findings and potential clinical applications. J Am Acad Orthop Surg 9(3):157–165

    PubMed  CAS  Google Scholar 

  56. Choi IH, Chung CY, Cho TJ, Yoo WJ (2002) Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci 17(4):435–447

    PubMed  Google Scholar 

  57. Malhotra A, Pelletier MH, Yu Y, Walsh WR (2013) Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg 133(2):153–165

    Article  PubMed  Google Scholar 

  58. Ronga M, Fagetti A, Canton G, Paiusco E, Surace MF, Cherubino P (2013) Clinical applications of growth factors in bone injuries: experience with BMPs. Injury 44(Suppl 1):S34–S39

    Article  PubMed  Google Scholar 

  59. Park SI, Soki FN, McCauley LK (2011) Roles of bone marrow cells in skeletal metastases: no longer bystanders. Cancer Microenviron 4(3):237–246

    Article  PubMed  CAS  Google Scholar 

  60. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491

    Article  PubMed  Google Scholar 

  61. Hosny G, Shawky MS (1998) The treatment of infected non-union of the tibia by compression-distraction techniques using the Ilizarov external fixator. Int Orthop 22(5):298–302

    Article  PubMed  CAS  Google Scholar 

  62. Mofid MM, Inoue N, Atabey A, Marti G, Chao EY, Manson PN, Vander Kolk CA (2002) Callus stimulation in distraction osteogenesis. Plast Reconstr Surg 109(5):1621–1629

    Article  PubMed  Google Scholar 

  63. Borzunov DY (2012) Long bone reconstruction using multilevel lengthening of bone defect fragments. Int Orthop 36(8):1695–1700

    Article  PubMed  Google Scholar 

  64. Giotakis N, Narayan B, Nayagam S (2007) Distraction osteogenesis and nonunion of the docking site: is there an ideal treatment option? Injury 38(Suppl 1):S100–S107

    Article  PubMed  Google Scholar 

  65. Ji B, Jiang G, Fu J, Long J, Wang H (2010) Why high frequency of distraction improved the bone formation in distraction osteogenesis? Med Hypotheses 74(5):871–873

    Article  PubMed  Google Scholar 

  66. Liu XL, Zhang HX, Ma L, Peng L, Cheung LK, Zheng LW (2012) Responses of distraction regenerate to high-frequency traction at a rapid rate. J Trauma Acute Care Surg 72(4):1035–1039

    PubMed  Google Scholar 

  67. Birke O, Davies N, Latimer M, Little DG, Bellemore M (2011) Experience with the Fassier-Duval telescopic rod: first 24 consecutive cases with a minimum of 1-year follow-up. J Pediatr Orthop 31(4):458–464

    Article  PubMed  Google Scholar 

  68. Lowenberg DW, Green SA (2008) Advances in limb lengthening and reconstruction: editorial comment. Clin Orthop Relat Res 466(12):2899–2900

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Y. Borzunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubin, A.V., Borzunov, D.Y. & Malkova, T.A. The Ilizarov paradigm: thirty years with the Ilizarov method, current concerns and future research. International Orthopaedics (SICOT) 37, 1533–1539 (2013). https://doi.org/10.1007/s00264-013-1935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-1935-0

Keywords

Navigation