Skip to main content

Advertisement

Log in

Investigation of neutrophilic peptides in periprosthetic tissue by matrix-assisted laser desorption ionisation time-of-flight imaging mass spectrometry

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The accurate diagnosis of periprosthetic joint infection (PJI) relies on clinical investigation, laboratory parameters, radiological methods, sterile joint aspiration for synovial fluid leucocyte count and microbiological analysis and tissue sampling for histopathology. Due to the limits in specificity and sensitivity of these methods, molecular techniques and new biomarkers were introduced into the diagnostic procedure. Histological examination is related to the amount of neutrophils in the periprosthetic tissue in frozen sections and formalin-fixed paraffin embedded material (FFPE). However, the threshold of neutrophils per defined area of tissue among various studies is very inconsistent.

Methods

We have applied matrix-assisted laser desorption ionisation time-of-flight imaging mass spectrometry (MALDI IMS) to a total of 32 periprosthetic tissue samples of patients with PJI to detect peptides associated with areas of neutrophil infiltration.

Results

Specific peaks associated with a high amount of neutrophils were detected. Of these m/z peaks, four could be assigned to predictive neutrophil molecules. These peptides include annexin A1, calgizzarin (S100A11), calgranulin C (S100A12) and histone H2A. By MALDI IMS, these peptides could be shown to be co-localised with the infiltration of neutrophils in the immediate vicinity of the periprosthetic interface, whereas more distant areas did not show neutrophil invasion or infection-related peptides.

Conclusions

MALDI IMS is a new method allowing identification of neutrophil peptides in periprosthetic tissues and may be a surrogate for counting neutrophils as an objective parameter for PJI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wimmer MD, Randau TM, Petersdorf S, Pagenstert GI, Weisskopf M, Wirtz DC, Gravius S (2013) Evaluation of an interdisciplinary therapy algorithm in patients with prosthetic joint infections. Int Orthop 37:2271–2278. doi:10.1007/s00264-013-1995-1

    Article  PubMed Central  PubMed  Google Scholar 

  2. Helwig P, Morlock J, Oberst M, Hauschild O, Hubner J, Borde J, Sudkamp NP, Konstantinidis L (2014) Periprosthetic joint infection—effect on quality of life. Int Orthop 38:1077–1081. doi:10.1007/s00264-013-2265-y

    Article  PubMed  Google Scholar 

  3. Randau TM, Friedrich MJ, Wimmer MD, Reichert B, Kuberra D, Stoffel-Wagner B, Limmer A, Wirtz DC, Gravius S (2014) Interleukin-6 in serum and in synovial fluid enhances the differentiation between periprosthetic joint infection and aseptic loosening. PLoS One 9:e89045. doi:10.1371/journal.pone.0089045

    Article  PubMed Central  PubMed  Google Scholar 

  4. Friedrich MJ, Randau TM, Wimmer MD, Reichert B, Kuberra D, Stoffel-Wagner B, Wirtz DC, Gravius S (2014) Lipopolysaccharide-binding protein: A valuable biomarker in the differentiation between periprosthetic joint infection and aseptic loosening? Int Orthop. doi:10.1007/s00264-014-2351-9

    Google Scholar 

  5. Elgeidi A, Elganainy AE, Abou Elkhier N, Rakha S (2014) Interleukin-6 and other inflammatory markers in diagnosis of periprosthetic joint infection. Int Orthop. doi:10.1007/s00264-014-2475-y

    PubMed  Google Scholar 

  6. Tam HH, Bhaludin B, Rahman F, Weller A, Ejindu V, Parthipun A (2014) SPECT-CT in total hip arthroplasty. Clin Radiol 69:82–95. doi:10.1016/j.crad.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  7. Minassian AM, Newnham R, Kalimeris E, Bejon P, Atkins BL, Bowler IC (2014) Use of an automated blood culture system (BD BACTEC) for diagnosis of prosthetic joint infections: easy and fast. BMC Infect Dis 14:233. doi:10.1186/1471-2334-14-233

    Article  PubMed Central  PubMed  Google Scholar 

  8. Atkins BL, Athanasou N, Deeks JJ, Crook DW, Simpson H, Peto TE, McLardy-Smith P, Berendt AR (1998) Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. The OSIRIS Collaborative Study Group. J Clin Microbiol 36:2932–2939

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Weiss S, Geiss H, Kommerell M, Simank HG, Bernd L, Henle P (2006) Improving the diagnosis of septic arthritis by use of a pediatric blood culture system. Der Orthopade 35(456):458–462. doi:10.1007/s00132-005-0900-z

    Google Scholar 

  10. Janz V, Wassilew GI, Hasart O, Matziolis G, Tohtz S, Perka C (2013) Evaluation of sonicate fluid cultures in comparison to histological analysis of the periprosthetic membrane for the detection of periprosthetic joint infection. Int Orthop 37:931–936. doi:10.1007/s00264-013-1853-1

    Article  PubMed Central  PubMed  Google Scholar 

  11. Portillo ME, Salvado M, Alier A, Martinez S, Sorli L, Horcajada JP, Puig L (2014) Advantages of sonication fluid culture for the diagnosis of prosthetic joint infection. J Infect 69:35–41. doi:10.1016/j.jinf.2014.03.002

    Article  PubMed  Google Scholar 

  12. Kriegsmann J, Hopf T, Jacobs D, Arens N, Krenn V, Schmitt-Wiedhoff R, Kriegsmann M, Heisel C, Biehl C, Thabe H, Schmitz RP, Lehmann M, Otto M (2009) Applications of molecular pathology in the diagnosis of joint infections. Orthopade 38:531–538. doi:10.1007/s00132-008-1394-2

    Article  CAS  PubMed  Google Scholar 

  13. Ryu SY, Greenwood-Quaintance KE, Hanssen AD, Mandrekar JN, Patel R (2014) Low sensitivity of periprosthetic tissue PCR for prosthetic knee infection diagnosis. Diagn Microbiol Infect Dis 79:448–453. doi:10.1016/j.diagmicrobio.2014.03.021

    Article  PubMed  Google Scholar 

  14. Esteban J, Sorli L, Alentorn-Geli E, Puig L, Horcajada JP (2014) Conventional and molecular diagnostic strategies for prosthetic joint infections. Expert Rev Mol Diagn 14:83–96. doi:10.1586/14737159.2014.861327

    Article  CAS  PubMed  Google Scholar 

  15. Lee GK, Lee HS, Park YS, Lee JH, Lee SC, Lee JH, Lee SJ, Shanta SR, Park HM, Kim HR, Kim IH, Kim YH, Zo JI, Kim KP, Kim HK (2012) Lipid MALDI profile classifies non-small cell lung cancers according to the histologic type. Lung Cancer 76:197–203. doi:10.1016/j.lungcan.2011.10.016

    Article  PubMed  Google Scholar 

  16. Kriegsmann M, Casadonte R, Randau T, Gravius S, Pennekamp P, Strauss A, Oldenburg J, Wieczorek K, Deininger SO, Otto M, Kriegsmann J (2014) MALDI imaging of predictive ferritin, fibrinogen and proteases in haemophilic arthropathy. Haemophilia 20:446–453

    Article  CAS  PubMed  Google Scholar 

  17. Panousis K, Grigoris P, Butcher I, Rana B, Reilly JH, Hamblen DL (2005) Poor predictive value of broad-range PCR for the detection of arthroplasty infection in 92 cases. Acta Orthop 76:341–346

    PubMed  Google Scholar 

  18. Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351:1645–1654. doi:10.1056/NEJMra040181

    Article  CAS  PubMed  Google Scholar 

  19. Morawietz L, Classen RA, Schroder JH, Dynybil C, Perka C, Skwara A, Neidel J, Gehrke T, Frommelt L, Hansen T, Otto M, Barden B, Aigner T, Stiehl P, Schubert T, Meyer-Scholten C, Konig A, Strobel P, Rader CP, Kirschner S, Lintner F, Ruther W, Bos I, Hendrich C, Kriegsmann J, Krenn V (2006) Proposal for a histopathological consensus classification of the periprosthetic interface membrane. J Clin Pathol 59:591–597. doi:10.1136/jcp.2005.027458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Krenn V, Morawietz L, Kienapfel H, Ascherl R, Matziolis G, Hassenpflug J, Thomsen M, Thomas P, Huber M, Schuh C, Kendoff D, Baumhoer D, Krukemeyer MG, Perino G, Zustin J, Berger I, Ruther W, Poremba C, Gehrke T (2013) Revised consensus classification. Histopathological classification of diseases associated with joint endoprostheses. Z Rheumatol 72:383–392. doi:10.1007/s00393-012-1099-0

    Article  CAS  PubMed  Google Scholar 

  21. Muller M, Morawietz L, Hasart O, Strube P, Perka C, Tohtz S (2008) Diagnosis of periprosthetic infection following total hip arthroplasty–evaluation of the diagnostic values of pre- and intraoperative parameters and the associated strategy to preoperatively select patients with a high probability of joint infection. J Orthop Surg Res 3:31. doi:10.1186/1749-799X-3-31

    Article  PubMed Central  PubMed  Google Scholar 

  22. Anagnostakos K, Schmid NV, Kelm J, Grun U, Jung J (2009) Classification of hip joint infections. Int J Med Sci 6:227–233

    Article  PubMed Central  PubMed  Google Scholar 

  23. Zhao X, Guo C, Zhao GS, Lin T, Shi ZL, Yan SG (2013) Ten versus five polymorphonuclear leukocytes as threshold in frozen section tests for periprosthetic infection: a meta-analysis. J Arthroplast 28:913–917. doi:10.1016/j.arth.2012.10.015

    Article  Google Scholar 

  24. Guenther D, Kokenge T, Jacobs O, Omar M, Krettek C, Gehrke T, Kendoff D, Haasper C (2014) Excluding infections in arthroplasty using leucocyte esterase test. Int Orthop. doi:10.1007/s00264-014-2449-0

    PubMed  Google Scholar 

  25. Casadonte R, Caprioli RM (2011) Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6:1695–1709. doi:10.1038/nprot.2011.388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Schwamborn K (2012) Imaging mass spectrometry in biomarker discovery and validation. J Proteomics 75:4990–4998. doi:10.1016/j.jprot.2012.06.015

    Article  CAS  PubMed  Google Scholar 

  27. Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, Garvin KL, Mont MA, Wongworawat MD, Zalavras CG (2011) New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res 469:2992–2994. doi:10.1007/s11999-011-2102-9

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wimmer MD, Vavken P, Pagenstert GI, Valderrabano V, Randau TM, Wirtz DC, Gravius S (2013) Spacer usage in prosthetic joint infections does not influence infect resolution: retrospective analysis of 120 joints with two-stage exchange.Re: Clinical outcome and microbiological findings using antibiotic-loaded spacers in two-stage revision of prosthetic joint infections. Cabo J, Euba G, Saborido A, Gonzalez-Panisello M, Dominguez MA, Agullo JL, Murillo O, Verdaguer R, Ariza J. Journal of Infection 2011 Jul, Volume: 63 Issue: 1 Pages: 23–31. J Infect 67:82–84. doi 10.1016/j.jinf.2013.02.001

  29. Zmistowski B, Della Valle C, Bauer TW, Malizos KN, Alavi A, Bedair H, Booth RE, Choong P, Deirmengian C, Ehrlich GD, Gambir A, Huang R, Kissin Y, Kobayashi H, Kobayashi N, Krenn V, Lorenzo D, Marston SB, Meermans G, Perez J, Ploegmakers JJ, Rosenberg A, Simpfendorfer C, Thomas P, Tohtz S, Villafuerte JA, Wahl P, Wagenaar FC, Witzo E (2014) Diagnosis of periprosthetic joint infection. J Orthop Res 32(Suppl 1):S98–S107. doi:10.1002/jor.22553

    PubMed  Google Scholar 

  30. Hugle T, Leumann A, Pagenstert G, Paul J, Hensel M, Barg A, Foster-Horvath C, Nowakowski AM, Valderrabano V, Wiewiorski M (2014) Retrograde synovial biopsy of the knee joint using a novel biopsy forceps. Arthroscopy Tech 3:e317–e319. doi:10.1016/j.eats.2014.01.009

    Article  Google Scholar 

  31. Muller M, Morawietz L, Hasart O, Strube P, Perka C, Tohtz S (2009) Histopathological diagnosis of periprosthetic joint infection following total hip arthroplasty : use of a standardized classification system of the periprosthetic interface membrane. Orthopade 38:1087–1096. doi:10.1007/s00132-009-1471-1

    Article  CAS  PubMed  Google Scholar 

  32. Feldman DS, Lonner JH, Desai P, Zuckerman JD (1995) The role of intraoperative frozen sections in revision total joint arthroplasty. J Bone Joint Surg Am 77:1807–1813

    CAS  PubMed  Google Scholar 

  33. Morawietz L, Tiddens O, Mueller M, Tohtz S, Gansukh T, Schroeder JH, Perka C, Krenn V (2009) Twenty-three neutrophil granulocytes in 10 high-power fields is the best histopathological threshold to differentiate between aseptic and septic endoprosthesis loosening. Histopathology 54:847–853. doi:10.1111/j.1365-2559.2009.03313.x

    Article  PubMed  Google Scholar 

  34. Bori G, Munoz-Mahamud E, Garcia S, Mallofre C, Gallart X, Bosch J, Garcia E, Riba J, Mensa J, Soriano A (2011) Interface membrane is the best sample for histological study to diagnose prosthetic joint infection. Modern Pathol 24:579–584. doi:10.1038/modpathol.2010.219

    Article  Google Scholar 

  35. Kriegsmann M, Seeley EH, Schwarting A, Kriegsmann J, Otto M, Thabe H, Dierkes B, Biehl C, Sack U, Wellmann A, Kahaly GJ, Schwamborn K, Caprioli RM (2012) MALDI MS imaging as a powerful tool for investigating synovial tissue. Scand J Rheumatol 41:305–309. doi:10.3109/03009742.2011.647925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rosales JL, Ernst JD (1997) Calcium-dependent neutrophil secretion: characterization and regulation by annexins. J Immunol 159:6195–6202

    CAS  PubMed  Google Scholar 

  37. Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LA, Perretti M, Rossi AG, Wallace JL (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21:325–332. doi:10.1096/fj.06-7227rev

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Dalli J, Norling LV, Renshaw D, Cooper D, Leung KY, Perretti M (2008) Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood 112:2512–2519. doi:10.1182/blood-2008-02-140533

    Article  CAS  PubMed  Google Scholar 

  39. He H, Li J, Weng S, Li M, Yu Y (2009) S100A11: diverse function and pathology corresponding to different target proteins. Cell Biochem Biophys 55:117–126. doi:10.1007/s12013-009-9061-8

    Article  CAS  PubMed  Google Scholar 

  40. Caldwell RL, Opalenik SR, Davidson JM, Caprioli RM, Nanney LB (2008) Tissue profiling MALDI mass spectrometry reveals prominent calcium-binding proteins in the proteome of regenerative MRL mouse wounds. Wound Repair Regen 16:442–449. doi:10.1111/j.1524-475X.2007.00351.x

    Article  PubMed Central  PubMed  Google Scholar 

  41. Thuny F, Textoris J, Amara AB, Filali AE, Capo C, Habib G, Raoult D, Mege JL (2012) The gene expression analysis of blood reveals S100A11 and AQP9 as potential biomarkers of infective endocarditis. PLoS One 7:e31490. doi:10.1371/journal.pone.0031490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, Wesselborg S, Kerkhoff C, Los M (2008) S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 83:1484–1492. doi:10.1189/jlb.0607397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Streicher WW, Lopez MM, Makhatadze GI (2009) Annexin I and annexin II N-terminal peptides binding to S100 protein family members: specificity and thermodynamic characterization. Biochemistry 48:2788–2798. doi:10.1021/bi8019959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Pietzsch J, Hoppmann S (2009) Human S100A12: a novel key player in inflammation? Amino Acids 36:381–389. doi:10.1007/s00726-008-0097-7

    Article  CAS  PubMed  Google Scholar 

  45. Meijer B, Gearry RB, Day AS (2012) The role of S100A12 as a systemic marker of inflammation. Int J Inflamm 2012:907078. doi:10.1155/2012/907078

    Article  CAS  Google Scholar 

  46. Leach ST, Yang Z, Messina I, Song C, Geczy CL, Cunningham AM, Day AS (2007) Serum and mucosal S100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with inflammatory bowel disease. Scand J Gastroenterol 42:1321–1331. doi:10.1080/00365520701416709

    Article  CAS  PubMed  Google Scholar 

  47. Ahmed U, Thornalley PJ, Rabbani N (2014) Possible role of methylglyoxal and glyoxalase in arthritis. Biochem Soc Trans 42:538–542. doi:10.1042/BST20140024

    Article  CAS  PubMed  Google Scholar 

  48. Achouiti A, Foll D, Vogl T, van Till JW, Laterre PF, Dugernier T, Wittebole X, Boermeester MA, Roth J, van der Poll T, van Zoelen MA (2013) S100A12 and soluble receptor for advanced glycation end products levels during human severe sepsis. Shock 40:188–194. doi:10.1097/SHK.0b013e31829fbc38

    Article  CAS  PubMed  Google Scholar 

  49. Brenaut P, Lefevre L, Rau A, Laloe D, Pisoni G, Moroni P, Bevilacqua C, Martin P (2014) Contribution of mammary epithelial cells to the immune response during early stages of a bacterial infection to Staphylococcus aureus. Vet Res 45:16. doi:10.1186/1297-9716-45-16

    Article  PubMed Central  PubMed  Google Scholar 

  50. Drees P, Eckardt A, Gay RE, Gay S, Huber LC (2008) Molecular pathways in aseptic loosening of orthopaedic endoprosthesis. Biomed Tech (Berl) 53:93–103. doi:10.1515/BMT.2008.021

    Article  CAS  Google Scholar 

  51. Franke S, Ruster C, Pester J, Hofmann G, Oelzner P, Wolf G (2011) Advanced glycation end products affect growth and function of osteoblasts. Clin Exp Rheumatol 29:650–660

    CAS  PubMed  Google Scholar 

  52. Robb CT, Dyrynda EA, Gray RD, Rossi AG, Smith VJ (2014) Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon. Nat Commun 5:4627. doi:10.1038/ncomms5627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2:a010272. doi:10.1101/cshperspect.a010272

    Article  PubMed Central  PubMed  Google Scholar 

  54. Brinkman CC, Peske JD, Engelhard VH (2013) Peripheral tissue homing receptor control of naive, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues. Front Immunol 4:241. doi:10.3389/fimmu.2013.00241

    Article  PubMed Central  PubMed  Google Scholar 

  55. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5:e1000639. doi:10.1371/journal.ppat.1000639

    Article  PubMed Central  PubMed  Google Scholar 

  56. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535. doi:10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  57. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, Uehata T, Iwasaki H, Omori H, Yamaoka S, Yamamoto N, Akira S (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12:109–116. doi:10.1016/j.chom.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  58. Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, Sivridis E, Koffa M, Giatromanolaki A, Boumpas DT, Ritis K, Kambas K (2014) Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol 233:294–307. doi:10.1002/path.4359

    Article  CAS  PubMed  Google Scholar 

  59. Allam R, Kumar SV, Darisipudi MN, Anders HJ (2014) Extracellular histones in tissue injury and inflammation. J Mol Med 92:465–472. doi:10.1007/s00109-014-1148-z

    Article  CAS  PubMed  Google Scholar 

  60. Abrams ST, Zhang N, Dart C, Wang SS, Thachil J, Guan Y, Wang G, Toh CH (2013) Human CRP defends against the toxicity of circulating histones. J Immunol 191:2495–2502. doi:10.4049/jimmunol.1203181

    Article  CAS  PubMed  Google Scholar 

  61. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J (2014) Diagnosing Periprosthetic Joint Infection: Has the Era of the Biomarker Arrived? Clin Orthop Relat Res. doi:10.1007/s11999-014-3543-8

    PubMed Central  Google Scholar 

  62. McElvania TeKippe E, Burnham CA (2014) Evaluation of the Bruker Biotyper and VITEK MS MALDI-TOF MS systems for the identification of unusual and/or difficult-to-identify microorganisms isolated from clinical specimens. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-014-2183-y

    Google Scholar 

  63. Dingle TC, Butler-Wu SM (2013) Maldi-tof mass spectrometry for microorganism identification. Clin Lab Med 33:589–609. doi:10.1016/j.cll.2013.03.001

    Article  PubMed  Google Scholar 

  64. Kostrzewa M, Sparbier K, Maier T, Schubert S (2013) MALDI-TOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin Appl 7:767–778. doi:10.1002/prca.201300042

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Gravius.

Additional information

Sascha Gravius and Thomas M. Randau contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gravius, S., Randau, T.M., Casadonte, R. et al. Investigation of neutrophilic peptides in periprosthetic tissue by matrix-assisted laser desorption ionisation time-of-flight imaging mass spectrometry. International Orthopaedics (SICOT) 39, 559–567 (2015). https://doi.org/10.1007/s00264-014-2544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2544-2

Keywords

Navigation