Skip to main content

Advertisement

Log in

S100A11: Diverse Function and Pathology Corresponding to Different Target Proteins

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

S100A11, as a member of S100 protein family, while featuring the common identities as the other EF-hand Ca2+-binding family members, has its own individual characteristics. S100A11 is widely expressed in multiple tissues, and is located in cytoplasm, nucleus, and even cell periphery. S100A11 exists as a non-covalent homodimer with an antiparallel conformation. Ca2+ binding to S100A11 would trigger conformational changes which would expose the hydrophobic cleft of S100A11 and facilitate its interaction with target proteins. Since S100A11 appears to lack enzymatic activity, in this article, corresponding to a variety of its target proteins, we systematically describe the biological roles of S100A11 and its possible mechanism in the processes of inflammation, regulation of enzyme activity, and cell growth regulation. As a dual cell growth mediator, S100A11 acts as either a tumor suppressor or promoter in many different types of tumors and would play respective roles in influencing the proliferation of the cancer cells. We intend to illustrate the biological function of the S100 protein, and shed light on the further research, which will provide us with a better understanding of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moore, B. W. (1965). A soluble protein characteristic of the nervous system. Biochemical and Biophysical Research Communications, 19(6), 739–744.

    Article  PubMed  CAS  Google Scholar 

  2. Schafer, B. W., & Heizmann, C. W. (1996). The S100 family of EF-hand calcium-binding proteins: Functions and pathology. Trends in Biochemical Sciences, 21(4), 134–140.

    PubMed  CAS  Google Scholar 

  3. Donato, R. (2001). S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. International Journal of Biochemistry and Cell Biology, 33(7), 637–668.

    Article  PubMed  CAS  Google Scholar 

  4. Santamaria-Kisiel, L., Rintala-Dempsey, A. C., & Shaw, G. S. (2006). Calcium-dependent and -independent interactions of the S100 protein family. Biochemical Journal, 396(2), 201–214.

    Article  PubMed  CAS  Google Scholar 

  5. Donato, R. (2003). Intracellular and extracellular roles of S100 proteins. Microscopy Research and Technique, 60(6), 540–551.

    Article  PubMed  CAS  Google Scholar 

  6. Marenholz, I., Heizmann, C. W., & Fritz, G. (2004). S100 proteins in mouse and man: From evolution to function and pathology (including an update of the nomenclature). Biochemical and Biophysical Research Communications, 322(4), 1111–1122.

    Article  PubMed  CAS  Google Scholar 

  7. DeVries, G., McDonald, J. R., & Walsh, M. P. (1989). Calmodulin-like Ca(2+)-binding proteins of smooth muscle. Cell Calcuim Metabolism, 427–437.

  8. Ohta, H., Sasaki, T., Naka, M., Hiraoka, O., Miyamoto, C., Furuichi, Y., et al. (1991). Molecular cloning and expression of the cDNA coding for a new member of the S100 protein family from porcine cardiac muscle. FEBS Letters, 295(1–3), 93–96.

    Article  PubMed  CAS  Google Scholar 

  9. Todoroki, H., Kobayashi, R., Watanabe, M., Minami, H., & Hidaka, H. (1991). Purification, characterization, and partial sequence analysis of a newly identified EF-hand type 13-kDa Ca(2+)-binding protein from smooth muscle and non-muscle tissues. Journal of Biological Chemistry, 266(28), 18668–18673.

    PubMed  CAS  Google Scholar 

  10. Inada, H., Naka, M., Tanaka, T., Davey, G. E., & Heizmann, C. W. (1999). Human S100A11 exhibits differential steady-state RNA levels in various tissues and a distinct subcellular localization. Biochemical and Biophysical Research Communications, 263(1), 135–138.

    Article  PubMed  CAS  Google Scholar 

  11. Seemann, J., Weber, K., & Gerke, V. (1997). Annexin I targets S100C to early endosomes. FEBS Letters, 413(1), 185–190.

    Article  PubMed  CAS  Google Scholar 

  12. Mailliard, W. S., Haigler, H. T., & Schlaepfer, D. D. (1996). Calcium-dependent binding of S100C to the N-terminal domain of annexin I. Journal of Biological Chemistry, 271(2), 719–725.

    Article  PubMed  CAS  Google Scholar 

  13. Seemann, J., Weber, K., & Gerke, V. (1996). Structural requirements for annexin I-S100C complex-formation. Biochemical Journal, 319(Pt 1), 123–129.

    PubMed  CAS  Google Scholar 

  14. Zhao, X. Q., Naka, M., Muneyuki, M., & Tanaka, T. (2000). Ca(2+)-dependent inhibition of actin-activated myosin ATPase activity by S100C (S100A11), a novel member of the S100 protein family. Biochemical and Biophysical Research Communications, 267(1), 77–79.

    Article  PubMed  CAS  Google Scholar 

  15. Sakaguchi, M., Miyazaki, M., Inoue, Y., Tsuji, T., Kouchi, H., Tanaka, T., et al. (2000). Relationship between contact inhibition and intranuclear S100C of normal human fibroblasts. Journal of Cell Biology, 149(6), 1193–1206.

    Article  PubMed  CAS  Google Scholar 

  16. Makino, E., Sakaguchi, M., Iwatsuki, K., & Huh, N. H. (2004). Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death. Journal of Molecular Medicine, 82(9), 612–620.

    Article  PubMed  CAS  Google Scholar 

  17. Cecil, D. L., Johnson, K., Rediske, J., Lotz, M., Schmidt, A. M., & Terkeltaub, R. (2005). Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. Journal of Immunology, 175(12), 8296–8302.

    CAS  Google Scholar 

  18. Dempsey, A. C., Walsh, M. P., & Shaw, G. S. (2003). Unmasking the annexin I interaction from the structure of Apo-S100A11. Structure, 11(7), 887–897.

    Article  PubMed  CAS  Google Scholar 

  19. Rintala-Dempsey, A. C., Rezvanpour, A., & Shaw, G. S. (2008). S100-annexin complexes—Structural insights. FEBS Journal, 275(20), 4956–4966.

    Article  PubMed  CAS  Google Scholar 

  20. Otterbein, L. R., Kordowska, J., Witte-Hoffmann, C., Wang, C. L., & Dominguez, R. (2002). Crystal structures of S100A6 in the Ca(2+)-free and Ca(2+)-bound states: The calcium sensor mechanism of S100 proteins revealed at atomic resolution. Structure, 10(4), 557–567.

    Article  PubMed  CAS  Google Scholar 

  21. Deloulme, J. C., Assard, N., Mbele, G. O., Mangin, C., Kuwano, R., & Baudier, J. (2000). S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. Journal of Biological Chemistry, 275(45), 35302–35310.

    Article  PubMed  CAS  Google Scholar 

  22. Sakaguchi, M., Miyazaki, M., Takaishi, M., Sakaguchi, Y., Makino, E., Kataoka, N., et al. (2003). S100C/A11 is a key mediator of Ca(2+)-induced growth inhibition of human epidermal keratinocytes. Journal of Cell Biology, 163(4), 825–835.

    Article  PubMed  CAS  Google Scholar 

  23. Cross, S. S., Hamdy, F. C., Deloulme, J. C., & Rehman, I. (2005). Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology, 46(3), 256–269.

    Article  PubMed  CAS  Google Scholar 

  24. Broome, A. M., & Eckert, R. L. (2004). Microtubule-dependent redistribution of a cytoplasmic cornified envelope precursor. Journal of Investigative Dermatology, 122(1), 29–38.

    Article  PubMed  CAS  Google Scholar 

  25. Rammes, A., Roth, J., Goebeler, M., Klempt, M., Hartmann, M., & Sorg, C. (1997). Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. Journal of Biological Chemistry, 272(14), 9496–9502.

    Article  PubMed  CAS  Google Scholar 

  26. Sakaguchi, M., Sonegawa, H., Murata, H., Kitazoe, M., Futami, J. I., Kataoka, K., et al. (2008). S100A11, an dual mediator for growth regulation of human keratinocytes. Molecular Biology of the Cell, 19(1), 78–85.

    Article  PubMed  CAS  Google Scholar 

  27. Ramasamy, R., Vannucci, S. J., Yan, S. S., Herold, K., Yan, S. F., & Schmidt, A. M. (2005). Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 15(7), 16R–28R.

    Article  PubMed  CAS  Google Scholar 

  28. Heizmann, C. W., Ackermann, G. E., & Galichet, A. (2007). Pathologies involving the S100 proteins and RAGE. Sub-Cellular Biochemistry, 45, 93–138.

    Article  PubMed  CAS  Google Scholar 

  29. Sparvero, L. J., Asafu-Adjei, D., Kang, R., Tang, D., Amin, N., Im, J., et al. (2009). RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. Journal of Translational Medicine, 7, 17.

    Article  PubMed  CAS  Google Scholar 

  30. Donato, R. (2007). RAGE: A single receptor for several ligands and different cellular responses: The case of certain S100 proteins. Current Molecular Medicine, 7(8), 711–724.

    Article  PubMed  CAS  Google Scholar 

  31. Bacon, K., Baggiolini, M., Broxmeyer, H., Horuk, R., Lindley, I., Mantovani, A., et al. (2002). Chemokine/chemokine receptor nomenclature. Journal of Interferon and Cytokine Research, 22(10), 1067–1068.

    Article  PubMed  Google Scholar 

  32. Merz, D., Liu, R., Johnson, K., & Terkeltaub, R. (2003). IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. Journal of Immunology, 171(8), 4406–4415.

    CAS  Google Scholar 

  33. Cecil, D. L., Rose, D. M., Terkeltaub, R., & Liu-Bryan, R. (2005). Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. Arthritis and Rheumatism, 52(1), 144–154.

    Article  PubMed  CAS  Google Scholar 

  34. Cecil, D. L., & Terkeltaub, R. (2008). Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes. Journal of Immunology, 180(12), 8378–8385.

    CAS  Google Scholar 

  35. Robinson, N. A., & Eckert, R. L. (1998). Identification of transglutaminase-reactive residues in S100A11. Journal of Biological Chemistry, 273(5), 2721–2728.

    Article  PubMed  CAS  Google Scholar 

  36. Miyazaki, M., Sakaguchi, M., Akiyama, I., Sakaguchi, Y., Nagamori, S., & Huh, N. H. (2004). Involvement of interferon regulatory factor 1 and S100C/A11 in growth inhibition by transforming growth factor beta 1 in human hepatocellular carcinoma cells. Cancer Research, 64(12), 4155–4161.

    Article  PubMed  CAS  Google Scholar 

  37. Sakaguchi, M., Miyazaki, M., Sonegawa, H., Kashiwagi, M., Ohba, M., Kuroki, T., et al. (2004). PKCalpha mediates TGFbeta-induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11. Journal of Cell Biology, 164(7), 979–984.

    Article  PubMed  CAS  Google Scholar 

  38. Watanabe, M., Ando, Y., Tokumitsu, H., & Hidaka, H. (1993). Binding site of annexin XI on the calcyclin molecule. Biochemical and Biophysical Research Communications, 196(3), 1376–1382.

    Article  PubMed  CAS  Google Scholar 

  39. Gerke, V., & Weber, K. (1985). The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells. EMBO Journal, 4(11), 2917–2920.

    PubMed  CAS  Google Scholar 

  40. Naka, M., Qing, Z. X., Sasaki, T., Kise, H., Tawara, I., Hamaguchi, S., et al. (1994). Purification and characterization of a novel calcium-binding protein, S100C, from porcine heart. Biochimica et Biophysica Acta, 1223(3), 348–353.

    PubMed  CAS  Google Scholar 

  41. Futter, C. E., & White, I. J. (2007). Annexins and endocytosis. Traffic, 8(8), 951–958.

    Article  PubMed  CAS  Google Scholar 

  42. Eckert, R. L., Broome, A. M., Ruse, M., Robinson, N., Ryan, D., & Lee, K. (2004). S100 proteins in the epidermis. Journal of Investigative Dermatology, 123(1), 23–33.

    Article  PubMed  CAS  Google Scholar 

  43. Parente, L., & Solito, E. (2004). Annexin 1: More than an anti-phospholipase protein. Inflammation Research, 53(4), 125–132.

    Article  PubMed  CAS  Google Scholar 

  44. Haigler, H. T., Schlaepfer, D. D., & Burgess, W. H. (1987). Characterization of lipocortin I and an immunologically unrelated 33-kDa protein as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors. Journal of Biological Chemistry, 262(14), 6921–6930.

    PubMed  CAS  Google Scholar 

  45. Sakaguchi, M., Murata, H., Sonegawa, H., Sakaguchi, Y., Futami, J., Kitazoe, M., et al. (2007). Truncation of annexin A1 is a regulatory lever for linking epidermal growth factor signaling with cytosolic phospholipase A2 in normal and malignant squamous epithelial cells. Journal of Biological Chemistry, 282(49), 35679–35686.

    Article  PubMed  CAS  Google Scholar 

  46. Robinson, N. A., Lapic, S., Welter, J. F., & Eckert, R. L. (1997). S100A11, S100A10, annexin I, desmosomal proteins, small proline-rich proteins, plasminogen activator inhibitor-2, and involucrin are components of the cornified envelope of cultured human epidermal keratinocytes. Journal of Biological Chemistry, 272(18), 12035–12046.

    Article  PubMed  CAS  Google Scholar 

  47. Ruse, M., Lambert, A., Robinson, N., Ryan, D., Shon, K. J., & Eckert, R. L. (2001). S100A7, S100A10, and S100A11 are transglutaminase substrates. Biochemistry, 40(10), 3167–3173.

    Article  PubMed  CAS  Google Scholar 

  48. Donato, R., Sorci, G., Riuzzi, F., Arcuri, C., Bianchi, R., Brozzi, F., et al. (2009). S100B’s double life: Intracellular regulator and extracellular signal. Biochimica et Biophysica Acta, 1793(6), 1008–1022.

    PubMed  CAS  Google Scholar 

  49. Huttunen, H. J., Kuja-Panula, J., Sorci, G., Agneletti, A. L., Donato, R., & Rauvala, H. (2000). Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. Journal of Biological Chemistry, 275(51), 40096–40105.

    Article  PubMed  CAS  Google Scholar 

  50. Arcuri, C., Bianchi, R., Brozzi, F., & Donato, R. (2005). S100B increases proliferation in PC12 neuronal cells and reduces their responsiveness to nerve growth factor via Akt activation. Journal of Biological Chemistry, 280(6), 4402–4414.

    Article  PubMed  CAS  Google Scholar 

  51. Baudier, J., Delphin, C., Grunwald, D., Khochbin, S., & Lawrence, J. J. (1992). Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 89(23), 11627–11631.

    Article  PubMed  CAS  Google Scholar 

  52. Lin, J., Blake, M., Tang, C., Zimmer, D., Rustandi, R. R., Weber, D. J., et al. (2001). Inhibition of p53 transcriptional activity by the S100B calcium-binding protein. Journal of Biological Chemistry, 276(37), 35037–35041.

    Article  PubMed  CAS  Google Scholar 

  53. Millward, T. A., Heizmann, C. W., Schafer, B. W., & Hemmings, B. A. (1998). Calcium regulation of Ndr protein kinase mediated by S100 calcium-binding proteins. EMBO Journal, 17(20), 5913–5922.

    Article  PubMed  CAS  Google Scholar 

  54. Gentil, B. J., Delphin, C., Mbele, G. O., Deloulme, J. C., Ferro, M., Garin, J., et al. (2001). The giant protein AHNAK is a specific target for the calcium- and zinc-binding S100B protein: Potential implications for Ca2+ homeostasis regulation by S100B. Journal of Biological Chemistry, 276(26), 23253–23261.

    Article  PubMed  CAS  Google Scholar 

  55. Sorci, G., Agneletti, A. L., & Donato, R. (2000). Effects of S100A1 and S100B on microtubule stability. An in vitro study using triton-cytoskeletons from astrocyte and myoblast cell lines. Neuroscience, 99(4), 773–783.

    Article  PubMed  CAS  Google Scholar 

  56. Frizzo, J. K., Tramontina, F., Bortoli, E., Gottfried, C., Leal, R. B., Lengyel, I., et al. (2004). S100B-mediated inhibition of the phosphorylation of GFAP is prevented by TRTK-12. Neurochemical Research, 29(4), 735–740.

    Article  PubMed  CAS  Google Scholar 

  57. Griffin, W. S., Sheng, J. G., McKenzie, J. E., Royston, M. C., Gentleman, S. M., Brumback, R. A., et al. (1998). Life-long overexpression of S100beta in Down’s syndrome: Implications for Alzheimer pathogenesis. Neurobiology of Aging, 19(5), 401–405.

    Article  PubMed  CAS  Google Scholar 

  58. van Dieck, J., Fernandez-Fernandez, M. R., Veprintsev, D. B., & Fersht, A. R. (2009). Modulation of the Oligomerization State of p53 by Differential Binding of Proteins of the S100 Family to p53 Monomers and Tetramers. Journal of Biological Chemistry, 284(20), 13804–13811.

    Article  PubMed  CAS  Google Scholar 

  59. Fernandez-Fernandez, M. R., Veprintsev, D. B., & Fersht, A. R. (2005). Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 102(13), 4735–4740.

    Article  PubMed  CAS  Google Scholar 

  60. Bianchi, R., Giambanco, I., Arcuri, C., & Donato, R. (2003). Subcellular localization of S100A11 (S100C) in LLC-PK1 renal cells: Calcium- and protein kinase c-dependent association of S100A11 with S100B and vimentin intermediate filaments. Microscopy Research and Technique, 60(6), 639–651.

    Article  PubMed  CAS  Google Scholar 

  61. Mannan, A. U., Nica, G., Nayernia, K., Mueller, C., & Engel, W. (2003). Calgizarrin like gene (Cal) deficient mice undergo normal spermatogenesis. Molecular Reproduction and Development, 66(4), 431–438.

    Article  PubMed  CAS  Google Scholar 

  62. Kanamori, T., Takakura, K., Mandai, M., Kariya, M., Fukuhara, K., Sakaguchi, M., et al. (2004). Increased expression of calcium-binding protein S100 in human uterine smooth muscle tumours. Molecular Human Reproduction, 10(10), 735–742.

    Article  PubMed  CAS  Google Scholar 

  63. Rust, R., Visser, L., van der Leij, J., Harms, G., Blokzijl, T., Deloulme, J. C., et al. (2005). High expression of calcium-binding proteins, S100A10, S100A11 and CALM2 in anaplastic large cell lymphoma. British Journal Haematology, 131(5), 596–608.

    Article  CAS  Google Scholar 

  64. Ohuchida, K., Mizumoto, K., Ohhashi, S., Yamaguchi, H., Konomi, H., Nagai, E., et al. (2006). S100A11, a putative tumor suppressor gene, is overexpressed in pancreatic carcinogenesis. Clinical Cancer Research, 12(18), 5417–5422.

    Article  PubMed  CAS  Google Scholar 

  65. Ji, J., Zhao, L., Wang, X., Zhou, C., Ding, F., Su, L., et al. (2004). Differential expression of S100 gene family in human esophageal squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 130(8), 480–486.

    Article  PubMed  CAS  Google Scholar 

  66. Memon, A. A., Sorensen, B. S., Meldgaard, P., Fokdal, L., Thykjaer, T., & Nexo, E. (2005). Down-regulation of S100C is associated with bladder cancer progression and poor survival. Clinical Cancer Research, 11(2 Pt 1), 606–611.

    PubMed  CAS  Google Scholar 

  67. Yao, R., Davidson, D. D., Lopez-Beltran, A., MacLennan, G. T., Montironi, R., & Cheng, L. (2007). The S100 proteins for screening and prognostic grading of bladder cancer. Histology and Histopathology, 22(9), 1025–1032.

    PubMed  CAS  Google Scholar 

  68. Rehman, I., Azzouzi, A. R., Cross, S. S., Deloulme, J. C., Catto, J. W., Wylde, N., et al. (2004). Dysregulated expression of S100A11 (calgizzarin) in prostate cancer and precursor lesions. Human Pathology, 35(11), 1385–1391.

    Article  PubMed  CAS  Google Scholar 

  69. Davey, G. E., Murmann, P., Hoechli, M., Tanaka, T., & Heizmann, C. W. (2000). Calcium-dependent translocation of S100A11 requires tubulin filaments. Biochimica et Biophysica Acta, 1498(2–3), 220–232.

    PubMed  CAS  Google Scholar 

  70. Bilder, D. (2004). Epithelial polarity and proliferation control: Links from the Drosophila neoplastic tumor suppressors. Genes and Development, 18(16), 1909–1925.

    Article  PubMed  CAS  Google Scholar 

  71. Bienz, M., & Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. Cell, 103(2), 311–320.

    Article  PubMed  CAS  Google Scholar 

  72. Volz, A., Korge, B. P., Compton, J. G., Ziegler, A., Steinert, P. M., & Mischke, D. (1993). Physical mapping of a functional cluster of epidermal differentiation genes on chromosome 1q21. Genomics, 18(1), 92–99.

    Article  PubMed  CAS  Google Scholar 

  73. Hardas, B. D., Zhao, X., Zhang, J., Longqing, X., Stoll, S., & Elder, J. T. (1996). Assignment of psoriasin to human chromosomal band 1q21: Coordinate overexpression of clustered genes in psoriasis. Journal of Investigative Dermatology, 106(4), 753–758.

    Article  PubMed  CAS  Google Scholar 

  74. Mandinova, A., Atar, D., Schafer, B. W., Spiess, M., Aebi, U., & Heizmann, C. W. (1998). Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. Journal of Cell Science, 111(Pt 14), 2043–2054.

    PubMed  CAS  Google Scholar 

  75. Ivanenkov, V. V., Jamieson, G. A., Jr., Gruenstein, E., & Dimlich, R. V. (1995). Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ. Journal of Biological Chemistry, 270(24), 14651–14658.

    Article  PubMed  CAS  Google Scholar 

  76. Garbuglia, M., Verzini, M., & Donato, R. (1998). Annexin VI binds S100A1 and S100B and blocks the ability of S100A1 and S100B to inhibit desmin and GFAP assemblies into intermediate filaments. Cell Calcium, 24(3), 177–191.

    Article  PubMed  CAS  Google Scholar 

  77. Gimona, M., Lando, Z., Dolginov, Y., Vandekerckhove, J., Kobayashi, R., Sobieszek, A., et al. (1997). Ca2+-dependent interaction of S100A2 with muscle and nonmuscle tropomyosins. Journal of Cell Science, 110(Pt 5), 611–621.

    PubMed  CAS  Google Scholar 

  78. Takenaga, K., Nakamura, Y., Sakiyama, S., Hasegawa, Y., Sato, K., & Endo, H. (1994). Binding of pEL98 protein, an S100-related calcium-binding protein, to nonmuscle tropomyosin. Journal of Cell Biology, 124(5), 757–768.

    Article  PubMed  CAS  Google Scholar 

  79. Roth, J., Burwinkel, F., van den Bos, C., Goebeler, M., Vollmer, E., & Sorg, C. (1993). MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner. Blood, 82(6), 1875–1883.

    PubMed  CAS  Google Scholar 

  80. Miwa, N., Uebi, T., & Kawamura, S. (2008). S100-annexin complexes—Biology of conditional association. FEBS Journal, 275(20), 4945–4955.

    Article  PubMed  CAS  Google Scholar 

  81. Mussunoor, S., & Murray, G. I. (2008). The role of annexins in tumour development and progression. Journal of Pathology, 216(2), 131–140.

    Article  PubMed  CAS  Google Scholar 

  82. Rintala-Dempsey, A. C., Santamaria-Kisiel, L., Liao, Y., Lajoie, G., & Shaw, G. S. (2006). Insights into S100 target specificity examined by a new interaction between S100A11 and annexin A2. Biochemistry, 45(49), 14695–14705.

    Article  PubMed  CAS  Google Scholar 

  83. Chang, N., Sutherland, C., Hesse, E., Winkfein, R., Wiehler, W. B., Pho, M., et al. (2007). Identification of a novel interaction between the Ca(2+)-binding protein S100A11 and the Ca(2+)- and phospholipid-binding protein annexin A6. American Journal of Physiology. Cell Physiology, 292(4), C1417–C1430.

    Article  PubMed  CAS  Google Scholar 

  84. Ryckman, C., Vandal, K., Rouleau, P., Talbot, M., & Tessier, P. A. (2003). Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. Journal of Immunology, 170(6), 3233–3242.

    CAS  Google Scholar 

  85. Eue, I., Pietz, B., Storck, J., Klempt, M., & Sorg, C. (2000). Transendothelial migration of 27E10+ human monocytes. International Immunology, 12(11), 1593–1604.

    Article  PubMed  CAS  Google Scholar 

  86. Hofmann, M. A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., et al. (1999). RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell, 97(7), 889–901.

    Article  PubMed  CAS  Google Scholar 

  87. Yang, Z., Tao, T., Raftery, M. J., Youssef, P., Di Girolamo, N., & Geczy, C. L. (2001). Proinflammatory properties of the human S100 protein S100A12. Journal of Leukocyte Biology, 69(6), 986–994.

    PubMed  CAS  Google Scholar 

  88. Saha, A., Kim, S. J., Zhang, Z., Lee, Y. C., Sarkar, C., Tsai, P. C., et al. (2008). RAGE signaling contributes to neuroinflammation in infantile neuronal ceroid lipofuscinosis. FEBS Letters, 582(27), 3823–3831.

    Article  PubMed  CAS  Google Scholar 

  89. Bianchi, R., Giambanco, I., & Donato, R. (2008). S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiology of Aging; [Epub ahead of print].

  90. Chavakis, T., Bierhaus, A., & Nawroth, P. P. (2004). RAGE (receptor for advanced glycation end products): A central player in the inflammatory response. Microbes and Infection, 6(13), 1219–1225.

    Article  PubMed  CAS  Google Scholar 

  91. Leclerc, E., Fritz, G., Weibel, M., Heizmann, C. W., & Galichet, A. (2007). S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. Journal of Biological Chemistry, 282(43), 31317–31331.

    Article  PubMed  CAS  Google Scholar 

  92. Ramasamy, R., Yan, S. F., Herold, K., Clynes, R., & Schmidt, A. M. (2008). Receptor for advanced glycation end products: Fundamental roles in the inflammatory response: Winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Annals of the New York Academy of Sciences, 1126, 7–13.

    Article  PubMed  CAS  Google Scholar 

  93. Cecil, D. L., Appleton, C. T., Polewski, M. D., Mort, J. S., Schmidt, A. M., Bendele, A., et al. (2009). The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli. Journal of Immunology, 182(8), 5024–5031.

    Article  CAS  Google Scholar 

  94. Salama, I., Malone, P. S., Mihaimeed, F., & Jones, J. L. (2008). A review of the S100 proteins in cancer. European Journal of Surgical Oncology, 34(4), 357–364.

    Article  PubMed  CAS  Google Scholar 

  95. Wicki, R., Franz, C., Scholl, F. A., Heizmann, C. W., & Schafer, B. W. (1997). Repression of the candidate tumor suppressor gene S100A2 in breast cancer is mediated by site-specific hypermethylation. Cell Calcium, 22(4), 243–254.

    Article  PubMed  CAS  Google Scholar 

  96. Mueller, A., Schafer, B. W., Ferrari, S., Weibel, M., Makek, M., Hochli, M., et al. (2005). The calcium-binding protein S100A2 interacts with p53 and modulates its transcriptional activity. Journal of Biological Chemistry, 280(32), 29186–29193.

    Article  PubMed  CAS  Google Scholar 

  97. Scotto, C., Deloulme, J. C., Rousseau, D., Chambaz, E., & Baudier, J. (1998). Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis. Molecular and Cellular Biology, 18(7), 4272–4281.

    PubMed  CAS  Google Scholar 

  98. Schmidt-Hansen, B., Klingelhofer, J., Grum-Schwensen, B., Christensen, A., Andresen, S., Kruse, C., et al. (2004). Functional significance of metastasis-inducing S100A4(Mts1) in tumor-stroma interplay. Journal of Biological Chemistry, 279(23), 24498–24504.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National 863 Program of Hi-Tech Research and Development of China (2007AA02Z100). We like to offer our special thanks to Y. Y. Lan for her general help in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Li, J., Weng, S. et al. S100A11: Diverse Function and Pathology Corresponding to Different Target Proteins. Cell Biochem Biophys 55, 117–126 (2009). https://doi.org/10.1007/s12013-009-9061-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9061-8

Keywords

Navigation