Skip to main content

Advertisement

Log in

Novel inhibitor of hematopoietic cell kinase as a potential therapeutic agent for acute myeloid leukemia

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are characterized by risk of relapses, poor survival, unwanted side effects and high toxicity with the current therapies. In light of these facts, there are efforts to develop new drugs specific for deregulated molecules that participate in leukemia pathogenesis. Hematopoietic cell kinase (HCK), an Src kinase family member, is overexpressed on hematopoietic stem cells of MDS and de novo AML patients and involved in the oncogenic process. Thus, we investigated in vitro, ex vivo and in vivo effects of a novel chemical compound targeting HCK inhibition (iHCK-37), in combination with the most used drugs for the treatment of MDS and de novo AML, 5-Azacytidine and Cytarabine. Herein, the combination treatment with iHCK-37 and 5-Azacytidine or Cytarabine demonstrated additive effects against leukemia cells, compared to either drug alone. iHCK-37 plus 5-Azacytidine or Cytarabine treatment was able to reduce the activation of oncogenic pathways, MAPK/ERK and PI3K/AKT, leading to reduction of ERK and AKT phosphorylation, and increased BAX and decreased BCL-XL protein expression. Moreover, treatment with iHCK-37 reduced MDS and AML CD34-positive cell numbers inside a 3D-structure but did not affect normal CD34-positive cell numbers. In vivo analysis showed that leukemic mice treated with iHCK-37 had reduced ERK and AKT proteins phosphorylation levels and leukocyte numbers. In conclusion, the iHCK-37 inhibitor has anti-neoplastic activity in leukemia cells without altering apoptosis and survival rate of normal cells, suggesting on-target malignant cell killing activity as a single agent or in combination with 5-Azacytidine or Cytarabine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siveen KS, Uddin S, Mohammad RM (2017) Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer 16(1):13. https://doi.org/10.1186/s12943-016-0571-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ades L, Itzykson R, Fenaux P (2014) Myelodysplastic syndromes. Lancet 383(9936):2239–2252. https://doi.org/10.1016/S0140-6736(13)61901-7

    Article  PubMed  Google Scholar 

  3. Brunner AM, Neuberg DS, Wander SA, Sadrzadeh H, Ballen KK, Amrein PC, Attar E, Hobbs GS, Chen YB, Perry A, Connolly C, Joseph C, Burke M, Ramos A, Galinsky I, Yen K, Yang H, Straley K, Agresta S, Adamia S, Borger DR, Iafrate A, Graubert TA, Stone RM, Fathi AT (2019) Isocitrate dehydrogenase 1 and 2 mutations, 2-hydroxyglutarate levels, and response to standard chemotherapy for patients with newly diagnosed acute myeloid leukemia. Cancer 125(4):541–549. https://doi.org/10.1002/cncr.31729

    Article  CAS  PubMed  Google Scholar 

  4. Dombret H, Gardin C (2016) An update of current treatments for adult acute myeloid leukemia. Blood 127(1):53–61. https://doi.org/10.1182/blood-2015-08-604520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. El-Jawahri A, Abel GA, Traeger L, Waldman L, Markovitz N, VanDusen H, Fathi A, Steensma DP, LeBlanc TW, Horick NK, DeAngelo DJ, Wadleigh M, Hobbs G, Foster J, Brunner AM, Amrein P, Stone RM, Temel JS, Greer JA (2019) Quality of life and mood of older patients with acute myeloid leukemia (AML) receiving intensive and non-intensive chemotherapy. Leukemia 33(10):2393–2402. https://doi.org/10.1038/s41375-019-0449-1

    Article  CAS  PubMed  Google Scholar 

  6. Mohammadi M, Cao Y, Glimelius I, Bottai M, Eloranta S, Smedby KE (2015) The impact of comorbid disease history on all-cause and cancer-specific mortality in myeloid leukemia and myeloma – a Swedish population-based study. BMC Cancer 15:850. https://doi.org/10.1186/s12885-015-1857-x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dubois F, Leroy C, Simon V, Benistant C, Roche S (2015) YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells. Am J Cancer Res 5(6):1972–1987

    PubMed  PubMed Central  Google Scholar 

  8. Amata I, Maffei M, Pons M (2014) Phosphorylation of unique domains of Src family kinases. Front Genet 5:181. https://doi.org/10.3389/fgene.2014.00181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aleshin A, Finn RS (2010) SRC: a century of science brought to the clinic. Neoplasia 12(8):599–607. https://doi.org/10.1593/neo.10328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dos Santos C, Demur C, Bardet V, Prade-Houdellier N, Payrastre B, Recher C (2008) A critical role for Lyn in acute myeloid leukemia. Blood 111(4):2269–2279. https://doi.org/10.1182/blood-2007-04-082099

    Article  CAS  PubMed  Google Scholar 

  11. Dos Santos C, McDonald T, Ho YW, Liu H, Lin A, Forman SJ, Kuo YH, Bhatia R (2013) The Src and c-Kit kinase inhibitor dasatinib enhances p53-mediated targeting of human acute myeloid leukemia stem cells by chemotherapeutic agents. Blood 122(11):1900–1913. https://doi.org/10.1182/blood-2012-11-466425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen K, Moroco JA, Patel RK, Shi H, Engen JR, Dorman HR, Smithgall TE (2018) The src family kinase fgr is a transforming oncoprotein that functions independently of SH3-SH2 domain regulation. Sci Signal. https://doi.org/10.1126/scisignal.aat5916

    Article  PubMed  Google Scholar 

  13. Baratti MO, Moreira YB, Traina F, Costa FF, Verjovski-Almeida S, Olalla-Saad ST (2010) Identification of protein-coding and non-coding RNA expression profiles in CD34+ and in stromal cells in refractory anemia with ringed sideroblasts. BMC Med Genomics 3:30. https://doi.org/10.1186/1755-8794-3-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roversi FM, Pericole FV, Machado-Neto JA, Duarte ADSS, Longhini AL, Corrocher FA, Palodetto B, Ferro KP, Rosa RG, Baratti MO, Verjovski-Almeida S, Traina F, Molinari A, Botta M (1863) Saad SOT (2017) Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim et Biophys Acta (BBA)- Mol Basis Dis 2:450–461. https://doi.org/10.1016/j.bbadis.2016.11.013

    Article  CAS  Google Scholar 

  15. Chen Z, Shen S, Shi W, Jiang G, Wang X, Jian H, Zhou Z, Ding Z, Lu S (2019) Intercalated combination of chemotherapy and erlotinib for stage IIIA non-small-cell lung cancer: a multicenter, open-label, single-arm, phase II study. Cancer Manag Res 11:6543–6552. https://doi.org/10.2147/CMAR.S189287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boehrer S, Galluzzi L, Lainey E, Bouteloup C, Tailler M, Harper F, Pierron G, Adès L, Thépot S, Sébert M, Gardin C, de Botton S, Fenaux P, Kroemer G (2011) Erlotinib antagonizes constitutive activation of SRC family kinases and mTOR in acute myeloid leukemia. Cell Cycle 10(18):3168–3175. https://doi.org/10.4161/cc.10.18.16599

    Article  CAS  PubMed  Google Scholar 

  17. Taylor JW, Dietrich J, Gerstner ER, Norden AD, Rinne ML, Cahill DP, Stemmer-Rachamimov A, Wen PY, Betensky RA, Giorgio DH, Snodgrass K, Randall AE, Batchelor TT, Chi AS (2015) Phase 2 study of bosutinib, a Src inhibitor, in adults with recurrent glioblastoma. J Neurooncol 121(3):557–63. https://doi.org/10.1007/s11060-014-1667-z

    Article  CAS  PubMed  Google Scholar 

  18. Bieerkehazhi S, Chen Z, Zhao Y, Yu Y, Zhang H, Vasudevan SA, Woodfield SE, Tao L, Yi JS, Muscal JA, Pang JC, Guan S, Zhang H, Nuchtern JG, Li H, Li H, Yang J (2017) Novel Src/Abl tyrosine kinase inhibitor bosutinib suppresses neuroblastoma growth via inhibiting Src/Abl signaling. Oncotarget 8(1):1469–1480. https://doi.org/10.18632/oncotarget.13643

    Article  PubMed  Google Scholar 

  19. MacDonald RJ, Bunaciu RP, Ip V, Dai D, Tran D, Varner JD, Yen A (2018) Src family kinase inhibitor bosutinib enhances retinoic acid-induced differentiation of HL-60 leukemia cells. Leuk Lymphoma 59(12):2941–2951. https://doi.org/10.1080/10428194.2018.1452213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weir MC, Shu ST, Patel RK, Hellwig S, Chen L, Tan L, Gray NS, Smithgall TE (2018) Selective inhibition of the myeloid src-family kinase fgr potently suppresses AML cell growth in vitro and in vivo. ACS Chem Biol 13(6):1551–1559. https://doi.org/10.1021/acschembio.8b00154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tintori C, Laurenzana I, La Rocca F, Falchi F, Carraro F, Ruiz A, Esté JA, Kissova M, Crespan E, Maga G, Biava M, Brullo C, Schenone S, Botta M (2013) Identification of Hck inhibitors as hits for the development of antileukemia and anti-HIV agents. ChemMedChem 8(8):1353–1360. https://doi.org/10.1002/cmdc.201300204

    Article  CAS  PubMed  Google Scholar 

  22. Ugo V, Marzac C, Teyssandier I, Larbret F, Lécluse Y, Debili N, Vainchenker W, Casadevall N (2004) Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 32(2):179–187. https://doi.org/10.1016/j.exphem.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  23. He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V, Cattoretti G, Pandolfi PP (1997) Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci U S A 94(10):5302–5307. https://doi.org/10.1073/pnas.94.10.5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rego EM, Ruggero D, Tribioli C (2006) Leukemia with distinct phenotypes in transgenic mice expressing PML/RAR alpha. PLZF/RAR alpha or NPM/RAR alpha Oncogene 25(13):1974–1979. https://doi.org/10.1038/sj.onc.1209216

    Article  CAS  PubMed  Google Scholar 

  25. dos Santos GA, e Abreu Lima RS, Pestana CR, Lima AS, Scheucher PS, Thomé CH, Gimenes-Teixeira HL, Santana-Lemos BA, Lucena-Araujo AR, Rodrigues FP, Nasr R, Uyemura SA, Falcão RP, de Thé H, Pandolfi PP, Curti C, Rego EM (2012) (+)α-Tocopheryl succinate inhibits the mitochondrial respiratory chain complex I and is as effective as arsenic trioxide or ATRA against acute promyelocytic leukemia in vivo. Leukemia. 26(3):451–60. https://doi.org/10.1038/leu.2011.216

    Article  CAS  PubMed  Google Scholar 

  26. Jácomo RH, Santana-Lemos BA, Lima AS et al (2012) Methionine induced hyper homocysteinemia reverts fibrinolytic pathway activation in a murine model of acute promyelocytic leukemia. Blood 120(1):207–213. https://doi.org/10.1182/blood-2011-04-347187

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira AK, Santana-Lemos BA, Rego EM, Filho OM, Chierice GO, Maria DA (2013) Synthetic phosphoethanolamine has in vitro and in vivo anti-leukemia effects. Br J Cancer 109(11):2819–2828. https://doi.org/10.1038/bjc.2013.510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Torello CO, Shiraishi RN, Della Via FI, Castro TCL, Longhini AL, Santos I, Bombeiro AL, Silva CLA, Queiroz MLS, Rego EM, Saad STO (2018) Reactive oxygen species production triggers green tea-induced anti-leukaemic effects on acute promyelocytic leukaemia model. Cancer Lett 414:116–126. https://doi.org/10.1016/j.canlet.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  29. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel) 11(10):1618. https://doi.org/10.3390/cancers11101618

    Article  CAS  Google Scholar 

  30. Bianco JER, Rosa RG, Congrains-Castillo A, Joazeiro PP, Waldman SD, Weber JF, Saad STO (2019) Characterization of a novel decellularized bone marrow scaffold as an inductive environment for hematopoietic stem cells. Biomat Sci 7(4):1516–1528. https://doi.org/10.1039/c8bm01503a

    Article  CAS  Google Scholar 

  31. Adelman ER, Huang HT, Roisman A, Olsson A, Colaprico A, Qin T, Lindsley RC, Bejar R, Salomonis N, Grimes HL, Figueroa ME (2019) Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov 9(8):1080–1101. https://doi.org/10.1158/2159-8290.CD-18-1474

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shih AH, Abdel-Wahab O, Patel JP, Levine RL (2012) The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 12:599–612. https://doi.org/10.1038/nrc3343

    Article  CAS  PubMed  Google Scholar 

  33. Klepin HD (2016) Myelodysplastic syndromes and acute myeloid leukemia in the elderly. Clin Geriatr Med 32(1):155–173. https://doi.org/10.1016/j.cger.2015.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  34. Juliusson G, Lazarevic V, Hörstedt AS, Hagberg O, Höglund M (2012) Acute leukemia registry group. Acute myeloid leukemia in the real world: why population-based registries are needed. Blood 119(17):3890–3899. https://doi.org/10.1182/blood-2011-12-379008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mufti GJ, Potter V (2012) Myelodysplastic syndromes: who and when in the course of disease to transplant. Hematology Am Soc Hematol Educ Program 1:49–55. https://doi.org/10.1182/asheducation-2012.1.49

    Article  Google Scholar 

  36. Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H (2017) Combination therapy in combating cancer. Oncotarget 8(23):38022–38043. https://doi.org/10.18632/oncotarget.16723

    Article  PubMed  Google Scholar 

  37. Miyamoto K, Minami Y (2019) Precision medicine and novel molecular target therapies in acute myeloid leukemia: the background of hematologic malignancies (HM)-SCREEN-Japan 01. Int J Clin Oncol. 24(8):893–898. https://doi.org/10.1007/s10147-019-01467-1

    Article  PubMed  PubMed Central  Google Scholar 

  38. Poh AR, O’Donoghue RJ, Ernst M (2015) Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 6:15752–15771. https://doi.org/10.18632/oncotarget.4199

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20(3):175–193. https://doi.org/10.1038/s41580-018-0089-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59. https://doi.org/10.1038/nrm2308

    Article  CAS  PubMed  Google Scholar 

  41. Jin S, Cojocari D, Purkal JJ, Popovic R, Talaty NN, Xiao Y, Solomon LR, Boghaert ER, Leverson JD, Phillips DC (2020) 5-azacytidine induces NOXA to prime AML cells for venetoclax-mediated apoptosis. Clin Cancer Res 26(13):3371–3383. https://doi.org/10.1158/1078-0432.CCR-19-1900

    Article  CAS  PubMed  Google Scholar 

  42. Wouters BJ, Delwel R (2016) Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood 127(1):42–52. https://doi.org/10.1182/blood-2015-07-604512

    Article  CAS  PubMed  Google Scholar 

  43. Pillinger G, Loughran NV, Piddock RE, Shafat MS, Zaitseva L, Abdul-Aziz A, Lawes MJ, Bowles KM, Rushworth SA (2016) Targeting PI3Kdelta and PI3Kgamma signalling disrupts human AML survival and bone marrow stromal cell mediated protection. Oncotarget 7(26):39784–39795. https://doi.org/10.18632/oncotarget.9289

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhou C, Du J, Zhao L, Liu W, Zhao T, Liang H, Fang P, Zhang K, Zeng H (2021) GLI1 reduces drug sensitivity by regulating cell cycle through PI3K/AKT/GSK3/CDK pathway in acute myeloid leukemia. Cell Death Dis 12(3):231. https://doi.org/10.1038/s41419-021-03504-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Raquel S Foglio (Hematology and Transfusion Medicine Center, University of Campinas, São Paulo, Brazil) for the English revision; Ana Leda Longhini (University of Alabama, Birmingham, AL, USA) and Irene Santos (Hematology and Transfusion Medicine Center, University of Campinas, São Paulo, Brazil) for flow cytometry assistance; Renata Giardini Rosa and Juares Ednaldo Romero Bianco for the development of scaffold material; and Alessio Molinari and Maurizzio Bottas (in memoriam) (Dipartimento di Biotecnologie, Chimica e Farmacia-Università degli Studi di Siena, Siena, Italy) for the synthesis of iHCK-37 compound. We also thank the National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC) at UNICAMP for the access to equipment and confocal assistance and analysis (FAPESP Grants 2014/50938-8 and CNPq Grants 465699/2014-6) and the Hemostasis Laboratory of Hematology and Transfusion Medicine Center (FAPESP Grants 2016/14172-6) at UNICAMP for cell proliferation analysis by IncuCyte S3 System (Sartorius). The authors also thank CNPq, FAPESP, and INCT-Sangue for the financial support.

Funding

This study was funded by grants from the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP Grants 2011/22376–7, and 2017/21801–2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

Fernanda Marconi Roversi was the principal investigator of this study, designing and performing the experiments, collecting, analyzing and interpreting data, and writing the manuscript; Maura Lima Pereira Bueno, Juliete Aparecida Francisco da Silva, Guilherme Rossi Assis-Mendonça contributed in the experiments and in the writing of the manuscript; Cristiane Okuda Torello, Rodrigo Nato Shiraishi, Karla Priscila Ferro, Eduardo Magalhães Rego contributed to mice experiments; Adriana Santos Silva Duarte carried out the cell separation; Fernando Viera Pericole acted as the reference physician and helped to analyze the data; Sara Teresinha Olalla Saad provided the study conception, directed the research, provided financial support, revised and gave final approval of the manuscript. All the authors read and approved the final manuscript and agreed that they are accountable for all the aspects of the work and assure the accuracy and integrity of the work.

Corresponding author

Correspondence to Sara Teresinha Olalla Saad.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roversi, F.M., Bueno, M.L.P., da Silva, J.A.F. et al. Novel inhibitor of hematopoietic cell kinase as a potential therapeutic agent for acute myeloid leukemia. Cancer Immunol Immunother 71, 1909–1921 (2022). https://doi.org/10.1007/s00262-021-03111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03111-2

Keywords

Navigation