Skip to main content

Advertisement

Log in

Tumor-induced CD14+HLA-DR−/low myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Myeloid-derived suppressor cells (MDSCs) are heterogeneous, immature, myeloid progenitor cells, which suppress immune responses against tumors. CD14+HLA-DR−/low monocytic MDSCs (M-MDSC) are increased in patients suffering from multiple myeloma (MM). However, the frequency and function of M-MDSCs with the relationship between the tumor development and outcome of therapy in MM remain unclear. In this study, we analyzed the changes in M-MDSCs in newly diagnosed, relapsed and remission MM patients. In addition, we also assessed the response of M-MDSCs in MM patients treated with a bortezomib-based therapy as well as the impact of bortezomib on the modulation of M-MDSCs in vitro. The levels of M-MDSCs in newly diagnosed and relapsed MM patients were significantly increased compared with those in remission MM patients and healthy donors. Moreover, the levels of M-MDSCs were shown to correlate with tumor progression. The decrease in M-MDSCs after proteasome inhibitory therapy suggested that M-MDSCs could be considered as an indicator for the efficacy of therapy. Finally, we found the plasma from newly diagnosed MM patients, and MM cells were able to induce the accumulation of M-MDSCs in vitro. These results indicated that M-MDSCs could be considered as a prognostic predictor and an important cell type contributing to immune suppressive microenvironment in MM patients. Treatments targeting for M-MDSCs may improve therapeutic outcomes for MM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Arg-1:

Arginase I

BM:

Bone marrow

BMMCs:

Bone marrow mononuclear cells

CD:

Cluster of differentiation

CFSE:

Carboxy fluorescein succinimidyl ester

CR:

Complete remission

ELISA:

Enzyme-linked immunosorbent assay

FACS:

Fluorescence-activated cell sorter

FBS:

Fetal bovine serum

G-CSF:

Granulocyte colony stimulating factor

HD:

Healthy donor

IC50:

50 % inhibiting concentration

Ig:

Immunoglobulin

iNOS:

Inducible nitric oxide synthase

ISS:

International staging system

MDSCs:

Myeloid-derived suppressor cells

MM:

Multiple myeloma

ND:

Newly diagnosed

PB:

Peripheral blood

PBMCs:

Peripheral blood mononuclear cells

Pre-cul:

Pre-culture

Rel:

Relapsed

Rem:

Remission

ROS:

Reactive species oxygen

TGF-β:

Transforming growth factor-β

Tregs:

Regulatory T cells

VGPR:

Very good partial remission

References

  1. Galustian C, Meyer B, Labarthe MC et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58:1033–1045. doi:10.1007/s00262-008-0620-4

    Article  CAS  PubMed  Google Scholar 

  2. Scheid C, Sonneveld P, Schmidt-Wolf IG et al (2014) Bortezomib before and after autologous stem cell transplantation overcomes the negative prognostic impact of renal impairment in newly diagnosed multiple myeloma: a subgroup analysis from the HOVON-65/GMMG-HD4 trial. Haematologica 99:148–154. doi:10.3324/haematol.2013.087585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Niesvizky R (2013) Immunomodulatory agents changing the landscape of multiple myeloma treatment. Crit Rev Oncol Hematol 88(Suppl 1):S1–S4. doi:10.1016/j.critrevonc.2012.12.011

    Article  PubMed  Google Scholar 

  4. Pratt G, Goodyear O, Moss P (2007) Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol 138:563–579. doi:10.1111/j.1365-2141.2007.06705.x

    Article  CAS  PubMed  Google Scholar 

  5. Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184:3106–3116. doi:10.4049/jimmunol.0902661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563. doi:10.1158/0008-5472.CAN-07-6229

    Article  CAS  PubMed  Google Scholar 

  7. Srivastava MK, Zhu L, Harris-White M et al (2012) Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS One 7:e40677. doi:10.1371/journal.pone.0040677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi:10.1038/nri2506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ostrand-Rosenberg S, Sinha P, Chornoguz O, Ecker C (2012) Regulating the suppressors: apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). Cancer Immunol Immunother 61:1319–1325. doi:10.1007/s00262-012-1269-6

    Article  CAS  PubMed  Google Scholar 

  10. Kusmartsev S, Gabrilovich DI (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51:293–298. doi:10.1007/s00262-002-0280-8

    Article  CAS  PubMed  Google Scholar 

  11. Manjili MH (2012) Phenotypic plasticity of MDSC in cancers. Immunol Investig 41:711–721. doi:10.3109/08820139.2012.673670

    Article  CAS  Google Scholar 

  12. Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11:802–807. doi:10.1016/j.intimp.2011.01.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zhao F, Hoechst B, Duffy A, Gamrekelashvili J, Fioravanti S, Manns MP, Greten TF, Korangy F (2012) S100A9 a new marker for monocytic human myeloid-derived suppressor cells. Immunology 136:176–183. doi:10.1111/j.1365-2567.2012.03566.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Liu CY, Wang YM, Wang CL et al (2010) Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14(−)/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 136:35–45. doi:10.1007/s00432-009-0634-0

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69:1553–1560. doi:10.1158/0008-5472.CAN-08-1921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135:234–243. doi:10.1053/j.gastro.2008.03.020

    Article  CAS  PubMed  Google Scholar 

  17. Markowitz J, Wesolowski R, Papenfuss T, Brooks TR, Carson WE 3rd (2013) Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat 140:13–21. doi:10.1007/s10549-013-2618-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Greipp PR, San Miguel J, Durie BG et al (2005) International staging system for multiple myeloma. J Clin Oncol 23:3412–3420. doi:10.1200/JCO.2005.04.242

    Article  PubMed  Google Scholar 

  19. Durie BG, Harousseau JL, Miguel JS et al (2006) International uniform response criteria for multiple myeloma. Leukemia 20:1467–1473. doi:10.1038/sj.leu.2404284

    Article  CAS  PubMed  Google Scholar 

  20. Rudolph BM, Loquai C, Gerwe A, Bacher N, Steinbrink K, Grabbe S, Tuettenberg A (2014) Increased frequencies of CD11b(+) CD33(+) CD14(+) HLA-DR(low) myeloid-derived suppressor cells are an early event in melanoma patients. Exp Dermatol 23:202–204. doi:10.1111/exd.12336

    Article  CAS  PubMed  Google Scholar 

  21. Huang A, Zhang B, Wang B, Zhang F, Fan KX, Guo YJ (2013) Increased CD14(+)HLA-DR (−/low) myeloid-derived suppressor cells correlate with extrathoracic metastasis and poor response to chemotherapy in non-small cell lung cancer patients. Cancer Immunol Immunother 62:1439–1451. doi:10.1007/s00262-013-1450-6

    Article  CAS  PubMed  Google Scholar 

  22. Lin Y, Gustafson MP, Bulur PA, Gastineau DA, Witzig TE, Dietz AB (2011) Immunosuppressive CD14+ HLA-DR(low)/− monocytes in B-cell non-Hodgkin lymphoma. Blood 117:872–881. doi:10.1182/blood-2010-05-283820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E, Speiser DE (2014) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother 63:247–257. doi:10.1007/s00262-013-1508-5

    Article  CAS  PubMed  Google Scholar 

  24. Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, Nakamoto Y, Kaneko S (2013) Increase in CD14+ HLA-DR −/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother 62:1421–1430. doi:10.1007/s00262-013-1447-1

    Article  CAS  PubMed  Google Scholar 

  25. Payne KK, Zoon CK, Wan W, Marlar K, Keim RC, Kenari MN, Kazim AL, Bear HD, Manjili MH (2013) Peripheral blood mononuclear cells of patients with breast cancer can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells. Breast Cancer Res Treat 142:45–57. doi:10.1007/s10549-013-2733-5

    Article  CAS  PubMed  Google Scholar 

  26. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59. doi:10.1007/s00262-008-0523-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13:739–752. doi:10.1038/nrc3581

    Article  CAS  PubMed  Google Scholar 

  28. Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593–1600. doi:10.1007/s00262-010-0855-8

    Article  PubMed Central  PubMed  Google Scholar 

  29. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77. doi:10.1158/0008-5472.CAN-09-2587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Schmidt H, Bastholt L, Geertsen P, Christensen IJ, Larsen S, Gehl J, von der Maase H (2005) Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br J Cancer 93:273–278. doi:10.1038/sj.bjc.6602702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yan-Li L, Kang-Sheng G, Yue-Yin P, Yang J, Zhi-Min Z (2014) The lower peripheral blood lymphocyte/monocyte ratio assessed during routine follow-up after standard first-line chemotherapy is a risk factor for predicting relapse in patients with diffuse large B-cell lymphoma. Leuk Res 38:323–328. doi:10.1016/j.leukres.2013.12.005

    Article  PubMed  Google Scholar 

  32. Gorgun GT, Whitehill G, Anderson JL et al (2013) Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 121:2975–2987. doi:10.1182/blood-2012-08-448548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Favaloro J, Liyadipitiya T, Brown R et al (2014) Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leuk Lymphoma. doi:10.3109/10428194.2014.904511

    Google Scholar 

  34. Yuan XK, Zhao XK, Xia YC, Zhu X, Xiao P (2011) Increased circulating immunosuppressive CD14(+)HLA-DR(−/low) cells correlate with clinical cancer stage and pathological grade in patients with bladder carcinoma. J Int Med Res 39:1381–1391

    Article  CAS  PubMed  Google Scholar 

  35. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185:2273–2284. doi:10.4049/jimmunol.1000901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wu CT, Hsieh CC, Lin CC, Chen WC, Hong JH, Chen MF (2012) Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med (Berl) 90:1343–1355. doi:10.1007/s00109-012-0916-x

    Article  CAS  Google Scholar 

  37. Schafer ZT, Brugge JS (2007) IL-6 involvement in epithelial cancers. J Clin Investig 117:3660–3663. doi:10.1172/JCI34237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161. doi:10.1146/annurev.immunol.16.1.137

    Article  CAS  PubMed  Google Scholar 

  39. Chikamatsu K, Sakakura K, Toyoda M, Takahashi K, Yamamoto T, Masuyama K (2012) Immunosuppressive activity of CD14+ HLA-DR- cells in squamous cell carcinoma of the head and neck. Cancer Sci 103:976–983. doi:10.1111/j.1349-7006.2012.02248.x

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182:240–249

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by l-arginine. J Biol Chem 277:21123–21129. doi:10.1074/jbc.M110675200

    Article  CAS  PubMed  Google Scholar 

  42. Raber P, Ochoa AC, Rodriguez PC (2012) Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Investig 41:614–634. doi:10.3109/08820139.2012.680634

    Article  CAS  Google Scholar 

  43. McBride A, Ryan PY (2013) Proteasome inhibitors in the treatment of multiple myeloma. Expert Rev Anticancer Ther 13:339–358. doi:10.1586/era.13.9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (81272259, 81401293) and Natural Science Foundation of Anhui Province (KJ2014Z017, KJ2013Z121). We are grateful to the volunteers who participated in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, L., Wang, H. et al. Tumor-induced CD14+HLA-DR−/low myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunol Immunother 64, 389–399 (2015). https://doi.org/10.1007/s00262-014-1646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1646-4

Keywords

Navigation