Skip to main content

Advertisement

Log in

Inhibition of induced nitric oxide synthase enhances the anti-tumor effects on cancer immunotherapy using TLR7 agonist in mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Toll-like receptor (TLR) agonists have been shown to have anti-tumor activity in basic research and clinical studies. However, TLR agonist monotherapy in cancer treatment dose not sufficiently eliminate tumors. Activation of the innate immune response by TLR agonists and other pathogen-associated molecular patterns is effective for driving adaptive immunity via interleukin (IL)-12 or IL-1, but is counteracted by the simultaneous induction of immunosuppressive cytokines and other molecules, including IL-10, tumor growth factor-β, and induced nitric oxide synthase (iNOS). In the present study, we evaluated the anticancer effect of the TLR7 agonist, imiquimod (IMQ), in the absence of iNOS. The administration of IMQ in iNOS-knockout (KO) mice implanted with tumor cells significantly suppressed tumor progression as compared to that in wild-type mice and improved the survival rate. Moreover, injection with IMQ enhanced the tumor antigen-specific Th1 response in iNOS-KO mice with tumors. The enhancement of the antigen-specific Th1 response was associated with an increase in IL-2 and IL-12b expressions in the tumor-draining lymph nodes. Combination therapy with IMQ and an iNOS inhibitor also significantly inhibited tumor growth in the established tumor model. Finally, our results indicated that the enhancement of iNOS expression through the administration with TLR agonists impairs host anti-tumor immunity, while the inhibition of iNOS could enhance the therapeutic efficacy of TLR agonists via the increase in Th1 immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ab:

Antibody

DC:

Dendritic cell

DLN:

Draining lymph node

IFN:

Interferon

IL:

Interleukin

IMQ:

Imiquimod

iNOS:

Inducible nitric oxide synthase

KO:

Knockout

L-NAME:

NG-nitro-l-arginine methyl ester

MDSCs:

Myeloid-derived suppressor cells

NO:

Nitric oxide

OVA:

Ovalbumin

TLR:

Toll-like receptor

WT:

Wild-type

References

  1. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  2. Conroy H, Marshall NA, Mills KH (2008) TLR ligand suppression or enhancement of Treg cells? A double-edged sword in immunity to tumours. Oncogene 27:168–180

    Article  CAS  PubMed  Google Scholar 

  3. Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. Cell Res 12:311–320

    Article  PubMed  Google Scholar 

  4. Lagares-Garcia JA, Moore RA, Collier B, Heggere M, Diaz F, Qian F (2001) Nitric oxide synthase as a marker in colorectal carcinoma. Am Surg 67:709–713

    CAS  PubMed  Google Scholar 

  5. Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S (1995) Nitric oxide synthase activity in human breast cancer. Br J Cancer 72:41–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13:721s–726s

    Article  CAS  PubMed  Google Scholar 

  7. Ito H, Koide N, Morikawa A, Hassan F, Islam S, Tumurkhuu G et al (2005) Augmentation of lipopolysaccharide-induced nitric oxide production by alpha-galactosylceramide in mouse peritoneal cells. J Endotoxin Res 11:213–219

    CAS  PubMed  Google Scholar 

  8. Karlsson A, Jagervall K, Utkovic H, Karlsson L, Rehnstrom E, Fredin MF et al (2008) Intra-colonic administration of the TLR7 agonist R-848 induces an acute local and systemic inflammation in mice. Biochem Biophys Res Commun 367:242–248

    Article  CAS  PubMed  Google Scholar 

  9. Ohtaki H, Ito H, Ando K, Ishikawa T, Saito K, Imawari M et al (2009) Valpha14 NKT cells activated by alpha-galactosylceramide augment lipopolysaccharide-induced nitric oxide production in mouse intra-hepatic lymphocytes. Biochem Biophys Res Commun 378:579–583

    Article  CAS  PubMed  Google Scholar 

  10. Shirota H, Klinman DM (2011) CpG-conjugated apoptotic tumor cells elicit potent tumor-specific immunity. Cancer Immunol Immunother 60:659–669

    Article  CAS  PubMed  Google Scholar 

  11. Ito H, Ando T, Ando K, Ishikawa T, Saito K, Moriwaki H et al (2014) Induction of hepatitis B virus surface antigen-specific cytotoxic T lymphocytes can be up-regulated by the inhibition of indoleamine 2,3-dioxygenase activity. Immunology 142:614–623

    Article  CAS  PubMed  Google Scholar 

  12. Ito H, Koide N, Hassan F, Islam S, Tumurkhuu G, Mori I et al (2006) Lethal endotoxic shock using alpha-galactosylceramide sensitization as a new experimental model of septic shock. Lab Invest 86:254–261

    Article  CAS  PubMed  Google Scholar 

  13. Ito H, Ando K, Ishikawa T, Saito K, Takemura M, Imawari M et al (2009) Role of TNF-alpha produced by nonantigen-specific cells in a fulminant hepatitis mouse model. J Immunol 182:391–397

    Article  CAS  PubMed  Google Scholar 

  14. Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32:305–315

    Article  CAS  PubMed  Google Scholar 

  15. Connolly DJ, O’Neill LA (2012) New developments in Toll-like receptor targeted therapeutics. Curr Opin Pharmacol 12:510–518

    Article  CAS  PubMed  Google Scholar 

  16. Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C (2012) Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 7:29–54

    Article  PubMed  Google Scholar 

  17. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  CAS  PubMed  Google Scholar 

  18. Ciorba MA, Bettonville EE, McDonald KG, Metz R, Prendergast GC, Newberry RD et al (2010) Induction of IDO-1 by immunostimulatory DNA limits severity of experimental colitis. J Immunol 184:3907–3916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Stockfleth E, Trefzer U, Garcia-Bartels C, Wegner T, Schmook T, Sterry W (2003) The use of Toll-like receptor-7 agonist in the treatment of basal cell carcinoma: an overview. Br J Dermatol 149(Suppl 66):53–56

    Article  CAS  PubMed  Google Scholar 

  20. Weber G, Caruana I, Rouce RH, Barrett AJ, Gerdemann U, Leen AM et al (2013) Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia—implications for immunotherapy. Clin Cancer Res 19:5079–5091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mortenson ED, Park S, Jiang Z, Wang S, Fu YX (2013) Effective anti-neu-initiated antitumor responses require the complex role of CD4+ T cells. Clin Cancer Res 19:1476–1486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Domschke C, Ge Y, Bernhardt I, Schott S, Keim S, Juenger S et al (2013) Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial. Cancer Immunol Immunother 62:1053–1060

    Article  CAS  PubMed  Google Scholar 

  23. Ito H, Ando K, Ishikawa T, Nakayama T, Taniguchi M, Saito K et al (2008) Role of Valpha14+ NKT cells in the development of Hepatitis B virus-specific CTL: activation of Valpha14+ NKT cells promotes the breakage of CTL tolerance. Int Immunol 20:869–879

    Article  CAS  PubMed  Google Scholar 

  24. Beutner KR, Geisse JK, Helman D, Fox TL, Ginkel A, Owens ML (1999) Therapeutic response of basal cell carcinoma to the immune response modifier imiquimod 5 % cream. J Am Acad Dermatol 41:1002–1007

    Article  CAS  PubMed  Google Scholar 

  25. Lu H, Wagner WM, Gad E, Yang Y, Duan H, Amon LM et al (2010) Treatment failure of a TLR-7 agonist occurs due to self-regulation of acute inflammation and can be overcome by IL-10 blockade. J Immunol 184:5360–5367

    Article  CAS  PubMed  Google Scholar 

  26. Blesson S, Thiery J, Gaudin C, Stancou R, Kolb JP, Moreau JL et al (2002) Analysis of the mechanisms of human cytotoxic T lymphocyte response inhibition by NO. Int Immunol 14:1169–1178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. H. Shirota for kindly providing several of the tumor cell lines in this study. This work was supported by Grant-in-Aid for Scientific Research (C) (24659361) from the Ministry for Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Ito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, H., Ando, T., Ogiso, H. et al. Inhibition of induced nitric oxide synthase enhances the anti-tumor effects on cancer immunotherapy using TLR7 agonist in mice. Cancer Immunol Immunother 64, 429–436 (2015). https://doi.org/10.1007/s00262-014-1644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1644-6

Keywords

Navigation