Skip to main content

Advertisement

Log in

Definition and application of good manufacturing process-compliant production of CEA-specific chimeric antigen receptor expressing T-cells for phase I/II clinical trial

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive cell therapy employing gene-modified T-cells expressing chimeric antigen receptors (CARs) has shown promising preclinical activity in a range of model systems and is now being tested in the clinical setting. The manufacture of CAR T-cells requires compliance with national and European regulations for the production of medicinal products. We established such a compliant process to produce T-cells armed with a first-generation CAR specific for carcinoembryonic antigen (CEA). CAR T-cells were successfully generated for 14 patients with advanced CEA+ malignancy. Of note, in the majority of patients, the defined procedure generated predominantly CD4+ CAR T-cells with the general T-cell population bearing an effector–memory phenotype and high in vitro effector function. Thus, improving the process to generate less-differentiated T-cells would be more desirable in the future for effective adoptive gene-modified T-cell therapy. However, these results confirm that CAR T-cells can be generated in a manner compliant with regulations governing medicinal products in the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

7-AAD:

7-Aminoactinomycin D

ATMP:

Advanced therapy medicinal product

CAR:

Chimeric antigen receptor

CEA:

Carcinoembryonic antigen

CTA:

Clinical trials authorization

DC:

Dendritic cell

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

GMP:

Good manufacturing process

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HSA:

Human serum albumin

PBS:

Phosphate-buffered saline

PQ:

Process quantification

scFv:

Single-chain variable fragment

TSE:

Transmissible spongiform encephalitis

UK:

United Kingdom

References

  1. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra138. doi:10.1126/scitranslmed.3005930

    Google Scholar 

  2. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73. doi:10.1126/scitranslmed.3002842

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720. doi:10.1182/blood-2011-10-384388

    Article  CAS  PubMed  Google Scholar 

  4. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733. doi:10.1056/NEJMoa1103849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gilham DE, Debets R, Pule M, Hawkins RE, Abken H (2012) CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med 18(7):377–384. doi:10.1016/j.molmed.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  6. Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG (2012) Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 61(7):953–962. doi:10.1007/s00262-012-1254-0

    Article  CAS  PubMed  Google Scholar 

  7. Zimmermann W, Weber B, Ortlieb B, Rudert F, Schempp W, Fiebig HH, Shively JE, von Kleist S, Thompson JA (1988) Chromosomal localization of the carcinoembryonic antigen gene family and differential expression in various tumors. Cancer Res 48(9):2550–2554

    CAS  PubMed  Google Scholar 

  8. Verhaar MJ, Chester KA, Keep PA, Robson L, Pedley RB, Boden JA, Hawkins RE, Begent RH (1995) A single chain Fv derived from a filamentous phage library has distinct tumor targeting advantages over one derived from a hybridoma. Int J Cancer 61(4):497–501. doi:10.1002/ijc.2910610412

    Article  CAS  PubMed  Google Scholar 

  9. Begent RH, Verhaar MJ, Chester KA, Casey JL, Green AJ, Napier MP, Hope-Stone LD, Cushen N, Keep PA, Johnson CJ, Hawkins RE, Hilson AJ, Robson L (1996) Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat Med 2(9):979–984. doi:10.1038/nm0996-979

    Article  CAS  PubMed  Google Scholar 

  10. Mayer A, Francis RJ, Sharma SK, Tolner B, Springer CJ, Martin J, Boxer GM, Bell J, Green AJ, Hartley JA, Cruickshank C, Wren J, Chester KA, Begent RH (2006) A phase I study of single administration of antibody-directed enzyme prodrug therapy with the recombinant anti-carcinoembryonic antigen antibody-enzyme fusion protein MFECP1 and a bis-iodo phenol mustard prodrug. Clin Cancer Res 12(21):6509–6516. doi:10.1158/1078-0432.CCR-06-0769

    Article  CAS  PubMed  Google Scholar 

  11. Gilham DE, O’Neil A, Hughes C, Guest RD, Kirillova N, Lehane M, Hawkins RE (2002) Primary polyclonal human T lymphocytes targeted to carcino-embryonic antigens and neural cell adhesion molecule tumor antigens by CD3zeta-based chimeric immune receptors. J Immunother 25(2):139–151. doi:10.1097/00002371-200203000-00002

    Article  CAS  PubMed  Google Scholar 

  12. Sheen AJ, Sherlock DJ, Irlam J, Hawkins RE, Gilham DE (2003) T lymphocytes isolated from patients with advanced colorectal cancer are suitable for gene immunotherapy approaches. Br J Cancer 88(7):1119–1127. doi:10.1038/sj.bjc.6600857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hombach AA, Schildgen V, Heuser C, Finnern R, Gilham DE, Abken H (2007) T cell activation by antibody-like immunoreceptors: the position of the binding epitope within the target molecule determines the efficiency of activation of redirected T cells. J Immunol 178(7):4650–4657

    CAS  PubMed  Google Scholar 

  14. Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O’Neill A, Irlam J, Chester KA, Kemshead JT, Shaw DM, Embleton MJ, Stern PL, Gilham DE (2005) The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother 28(3):203–211. doi:10.1097/01.cji.0000161397.96582.59

    Article  CAS  PubMed  Google Scholar 

  15. Madan RA, Bilusic M, Heery C, Schlom J, Gulley JL (2012) Clinical evaluation of TRICOM vector therapeutic cancer vaccines. Semin Oncol 39(3):296–304. doi:10.1053/j.seminoncol.2012.02.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Safar M, Junghans RP (2000) Interleukin 2 maintains biologic stability and sterility over prolonged time. Immunopharmacology 49(3):419–423. doi:10.1016/S0162-3109(00)00241-1

    Article  CAS  PubMed  Google Scholar 

  17. Calmels B, Houze P, Hengesse JC, Ducrot T, Malenfant C, Chabannon C (2003) Preclinical evaluation of an automated closed fluid management device: Cytomate, for washing out DMSO from hematopoietic stem cell grafts after thawing. Bone Marrow Transplant 31(9):823–828. doi:10.1038/sj.bmt.1703905

    Article  CAS  PubMed  Google Scholar 

  18. Fehse B, Kustikova OS, Li Z, Wahlers A, Bohn W, Beyer WR, Chalmers D, Tiberghien P, Kuhlcke K, Zander AR, Baum C (2002) A novel ‘sort-suicide’ fusion gene vector for T cell manipulation. Gene Ther 9(23):1633–1638. doi:10.1038/sj.gt.3301828

    Article  CAS  PubMed  Google Scholar 

  19. Lamers CH, van Elzakker P, van Steenbergen SC, Sleijfer S, Debets R, Gratama JW (2008) Retronectin-assisted retroviral transduction of primary human T lymphocytes under good manufacturing practice conditions: tissue culture bag critically determines cell yield. Cytotherapy 10(4):406–416. doi:10.1080/14653240801982961

    Article  CAS  PubMed  Google Scholar 

  20. Lamers CH, Willemsen RA, Luider BA, Debets R, Bolhuis RL (2002) Protocol for gene transduction and expansion of human T lymphocytes for clinical immunogene therapy of cancer. Cancer Gene Ther 9(7):613–623. doi:10.1038/sj.cgt.7700477

    Article  CAS  PubMed  Google Scholar 

  21. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, Chen CC, Yang JC, Rosenberg SA, Hwu P (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20 Pt 1):6106–6115. doi:10.1158/1078-0432.CCR-06-1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, Vulto A, den Bakker M, Oosterwijk E, Debets R, Gratama JW (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21(4):904–912. doi:10.1038/mt.2013.17

    Article  CAS  PubMed  Google Scholar 

  23. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851. doi:10.1038/mt.2010.24

    Article  CAS  PubMed  Google Scholar 

  24. Lamers CH, van Elzakker P, Langeveld SC, Sleijfer S, Gratama JW (2006) Process validation and clinical evaluation of a protocol to generate gene-modified T lymphocytes for imunogene therapy for metastatic renal cell carcinoma: GMP-controlled transduction and expansion of patient’s T lymphocytes using a carboxy anhydrase IX-specific scFv transgene. Cytotherapy 8(6):542–553. doi:10.1080/14653240601056396

    Article  CAS  PubMed  Google Scholar 

  25. Gattinoni L, Klebanoff CA, Restifo NP (2012) Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 12(10):671–684. doi:10.1038/nrc3322

    Article  CAS  PubMed  Google Scholar 

  26. Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, Bondanza A, Bordignon C, Peccatori J, Ciceri F, Lupo-Stanghellini MT, Mavilio F, Mondino A, Bicciato S, Recchia A, Bonini C (2013) IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121(4):573–584. doi:10.1182/blood-2012-05-431718

    Article  CAS  PubMed  Google Scholar 

  27. Yang S, Ji Y, Gattinoni L, Zhang L, Yu Z, Restifo NP, Rosenberg SA, Morgan RA (2013) Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol Immunother 62(4):727–736. doi:10.1007/s00262-012-1378-2

    Article  CAS  PubMed  Google Scholar 

  28. Somerville RP, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME (2012) Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE(R) bioreactor. J Transl Med 10:69. doi:10.1186/1479-5876-10-69

    Article  PubMed Central  PubMed  Google Scholar 

  29. Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H, Wilson J, Dotti G, Heslop HE, Leen AM, Rooney CM (2010) Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother 33(3):305–315. doi:10.1097/CJI.0b013e3181c0c3cb

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of Cancer Research UK for this work. This work was also supported by funding from the Kay Kendall Leukaemia Fund, the FP6 Program ATTACK, the NHSBT, Christie Hospital NHS Trust, and the BBSRC (HG).

Conflict of interest

Ryan D Guest, Robert E Hawkins, and David E Gilham are cofounders of Cellular Therapeutics Ltd. All other authors do not have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Gilham.

Additional information

Robert E. Hawkins and David E. Gilham are Joint Senior Authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guest, R.D., Kirillova, N., Mowbray, S. et al. Definition and application of good manufacturing process-compliant production of CEA-specific chimeric antigen receptor expressing T-cells for phase I/II clinical trial. Cancer Immunol Immunother 63, 133–145 (2014). https://doi.org/10.1007/s00262-013-1492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1492-9

Keywords

Navigation