Skip to main content
Log in

In vivo manufacture and manipulation of CAR-T cells for better druggability

  • REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on–off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Abi Hussein, H., et al. (2017). Global vision of druggability issues. Drug Discovery Today, 22, 404–415. https://doi.org/10.1016/j.drudis.2016.11.021

    Article  Google Scholar 

  2. Fauman, E. B., Rai, B. K., & Huang, E. S. (2011). Structure-based druggability assessment–Identifying suitable targets for small molecule therapeutics. Current opinion in Chemical Biology, 15, 463–468. https://doi.org/10.1016/j.cbpa.2011.05.020

    Article  CAS  PubMed  Google Scholar 

  3. Owens, J. (2007). Determining druggability. Nature Reviews Drug Discovery, 6, 187. https://doi.org/10.1038/nrd2275

    Article  CAS  Google Scholar 

  4. Cheng, A. C., et al. (2007). Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnology, 25, 71–75. https://doi.org/10.1038/nbt1273

    Article  CAS  PubMed  Google Scholar 

  5. Vormittag, P., Gunn, R., Ghorashian, S., & Veraitch, F. S. (2018). A guide to manufacturing CAR T cell therapies. Current Opinion in Biotechnology, 53, 164–181. https://doi.org/10.1016/j.copbio.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe, N., Mo, F., & McKenna, M. K. (2022). Impact of manufacturing procedures on CAR T cell functionality. Frontiers in Immunology, 13, 876339. https://doi.org/10.3389/fimmu.2022.876339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abou-El-Enein, M., et al. (2021). Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discovery, 2, 408–422. https://doi.org/10.1158/2643-3230.Bcd-21-0084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allen, E. S., et al. (2017). Autologous lymphapheresis for the production of chimeric antigen receptor T cells. Transfusion, 57, 1133–1141. https://doi.org/10.1111/trf.14003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, W., Jiang, Z., Jiang, W., & Yang, R. (2022). Universal chimeric antigen receptor T cell therapy - The future of cell therapy: A review providing clinical evidence. Cancer Treatment and Research Communications, 33, 100638. https://doi.org/10.1016/j.ctarc.2022.100638

    Article  PubMed  Google Scholar 

  10. Torikai, H., et al. (2012). A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood, 119, 5697–5705. https://doi.org/10.1182/blood-2012-01-405365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grupp, S. A., et al. (2013). Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine, 368, 1509–1518. https://doi.org/10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kochenderfer, J. N., et al. (2012). B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 119, 2709–2720. https://doi.org/10.1182/blood-2011-10-384388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamers, C. H., et al. (2013). Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: Clinical evaluation and management of on-target toxicity. Molecular therapy : The journal of the American Society of Gene Therapy, 21, 904–912. https://doi.org/10.1038/mt.2013.17

    Article  CAS  PubMed  Google Scholar 

  14. Barrett, D. M., Teachey, D. T., & Grupp, S. A. (2014). Toxicity management for patients receiving novel T-cell engaging therapies. Current Opinion in Pediatrics, 26, 43–49. https://doi.org/10.1097/mop.0000000000000043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daniels, K. G., et al. (2022). Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning. Science (New York, N.Y.).=, 378, 1194–1200. https://doi.org/10.1126/science.abq0225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alizadeh, D., et al. (2019). IL15 Enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunology Research, 7, 759–772. https://doi.org/10.1158/2326-6066.Cir-18-0466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amini, L., et al. (2022). Preparing for CAR T cell therapy: Patient selection, bridging therapies and lymphodepletion. Nature Reviews. Clinical Oncology, 19, 342–355. https://doi.org/10.1038/s41571-022-00607-3

    Article  PubMed  Google Scholar 

  18. Schwartz, R. H. (2003). T cell anergy. Annual Review of Immunology, 21, 305–334. https://doi.org/10.1146/annurev.immunol.21.120601.141110

    Article  CAS  PubMed  Google Scholar 

  19. Dropulić, B. (2011). Lentiviral vectors: Their molecular design, safety, and use in laboratory and preclinical research. Human Gene Therapy, 22, 649–657. https://doi.org/10.1089/hum.2011.058

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, Q., et al. (2012). T-cell receptor gene transfer exclusively to human CD8(+) cells enhances tumor cell killing. Blood, 120, 4334–4342. https://doi.org/10.1182/blood-2012-02-412973

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, Q., et al. (2015). Exclusive transduction of human CD4+ T cells upon systemic delivery of CD4-targeted lentiviral vectors. Journal of immunology (Baltimore, Md. : 1950), 195, 2493–2501, https://doi.org/10.4049/jimmunol.1500956

  22. Pfeiffer, A., et al. (2018). In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Molecular Medicine, 10https://doi.org/10.15252/emmm.201809158

  23. Ho, N., et al. (2022). In vivo generation of CAR T cells in the presence of human myeloid cells. Molecular therapy. Methods & Clinical Development, 26, 144–156. https://doi.org/10.1016/j.omtm.2022.06.004

    Article  CAS  Google Scholar 

  24. Moço, P. D., Aharony, N., & Kamen, A. (2020). Adeno-associated viral vectors for homology-directed generation of CAR-T cells. Biotechnology Journal, 15, e1900286. https://doi.org/10.1002/biot.201900286

    Article  CAS  PubMed  Google Scholar 

  25. Wu, Z., Asokan, A., & Samulski, R. J. (2006). Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Molecular Therapy : The Journal of the American Society of Gene Therapy, 14, 316–327. https://doi.org/10.1016/j.ymthe.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J., et al. (2016). Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Research, 44, e30. https://doi.org/10.1093/nar/gkv1121

    Article  CAS  PubMed  Google Scholar 

  27. MacLeod, D. T., et al. (2017). Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Molecular Therapy: The Journal of the American Society of Gene Therapy, 25, 949–961. https://doi.org/10.1016/j.ymthe.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  28. Dai, X., et al. (2019). One-step generation of modular CAR-T cells with AAV-Cpf1. Nature Methods, 16, 247–254. https://doi.org/10.1038/s41592-019-0329-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nawaz, W., et al. (2021). AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer Journal, 11, 119. https://doi.org/10.1038/s41408-021-00508-1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brady, J. M., Baltimore, D., & Balazs, A. B. (2017). Antibody gene transfer with adeno-associated viral vectors as a method for HIV prevention. Immunological Reviews, 275, 324–333. https://doi.org/10.1111/imr.12478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nyberg, W. A., et al. (2023). An evolved AAV variant enables efficient genetic engineering of murine T cells. Cell, 186, 446–460.e419. https://doi.org/10.1016/j.cell.2022.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Agarwal, S., Weidner, T., Thalheimer, F. B., & Buchholz, C. J. (2019). In vivo generated human CAR T cells eradicate tumor cells. Oncoimmunology, 8, e1671761. https://doi.org/10.1080/2162402x.2019.1671761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agarwal, S., et al. (2020). In vivo generation of CAR T cells selectively in human CD4(+) lymphocytes. Molecular therapy : The Journal of the American Society of Gene Therapy, 28, 1783–1794. https://doi.org/10.1016/j.ymthe.2020.05.005

    Article  CAS  PubMed  Google Scholar 

  34. Frank, A. M., et al. (2020). Combining T-cell-specific activation and in vivo gene delivery through CD3-targeted lentiviral vectors. Blood Advances, 4, 5702–5715. https://doi.org/10.1182/bloodadvances.2020002229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huckaby, J. T., et al. (2021). Bispecific binder redirected lentiviral vector enables in vivo engineering of CAR-T cells. Journal for Immunotherapy of Cancer, 9. https://doi.org/10.1136/jitc-2021-002737

  36. Mathur, D., Galvan, A. R., Green, C. M., Liu, K., & Medintz, I. L. (2023). Uptake and stability of DNA nanostructures in cells: A cross-sectional overview of the current state of the art. Nanoscale, 15, 2516–2528. https://doi.org/10.1039/d2nr05868e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian, R., Shang, Y., Wang, Y., Jiang, Q. & Ding, B. (2023) DNA nanomaterials-based platforms for cancer immunotherapy. Small Methods, e2201518. https://doi.org/10.1002/smtd.202201518

  38. Smith, T. T., et al. (2017). In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nature Nanotechnology, 12, 813–820. https://doi.org/10.1038/nnano.2017.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rurik, J. G., et al. (2022). CAR T cells produced in vivo to treat cardiac injury. Science (New York, N.Y.), 375, 91–96. https://doi.org/10.1126/science.abm0594

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, G., Zhang, Y., Xu, C. F., & Wang, J. (2024). In vivo production of CAR-T cells using virus-mimetic fusogenic nanovesicles. Science Bulletin, 69, 354–366. https://doi.org/10.1016/j.scib.2023.11.055

    Article  CAS  PubMed  Google Scholar 

  41. Kaech, S. M., Wherry, E. J., & Ahmed, R. (2002). Effector and memory T-cell differentiation: Implications for vaccine development. Nature Reviews. Immunology, 2, 251–262. https://doi.org/10.1038/nri778

    Article  CAS  PubMed  Google Scholar 

  42. Okła, K., Farber, D. L. & Zou, W. (2021). Tissue-resident memory T cells in tumor immunity and immunotherapy. The Journal of Experimental Medicine, 218https://doi.org/10.1084/jem.20201605

  43. Klebanoff, C. A., Gattinoni, L., & Restifo, N. P. (2012) Sorting through subsets: Which T-cell populations mediate highly effective adoptive immunotherapy? Journal of Immunotherapy (Hagerstown, Md. : 1997), 35, 651–660. https://doi.org/10.1097/CJI.0b013e31827806e6

  44. Hinrichs, C. S., et al. (2009). Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 106, 17469–17474. https://doi.org/10.1073/pnas.0907448106

    Article  PubMed  PubMed Central  Google Scholar 

  45. El Marabti, E., & Abdel-Wahab, O. (2023). Enhancing CD19 chimeric antigen receptor T cells through memory-enriched T cells. Clinical Cancer Research : An official Journal of the American Association for Cancer Research, 29, 694–696. https://doi.org/10.1158/1078-0432.Ccr-22-3232

    Article  PubMed  Google Scholar 

  46. Ghassemi, S., et al. (2018). Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunology Research, 6, 1100–1109. https://doi.org/10.1158/2326-6066.Cir-17-0405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Agarwalla, P., et al. (2022). Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nature Biotechnology, 40, 1250–1258. https://doi.org/10.1038/s41587-022-01245-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, J., et al. (2022). Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: First-in-human clinical study. Blood Cancer Journal, 12, 104. https://doi.org/10.1038/s41408-022-00694-6

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang, C., et al. (2022). Novel CD19 chimeric antigen receptor T cells manufactured next-day for acute lymphoblastic leukemia. Blood Cancer Journal, 12, 96. https://doi.org/10.1038/s41408-022-00688-4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, Y. L. et al. (2021). Web-based quantitative structure-activity relationship resources facilitate effective drug discovery. Topics in Current Chemistry (Cham), 379, 37. https://doi.org/10.1007/s41061-021-00349-3

  51. Neelakantan, H., et al. (2017). Structure-activity relationship for small molecule inhibitors of nicotinamide N-methyltransferase. Journal of Medicinal Chemistry, 60, 5015–5028. https://doi.org/10.1021/acs.jmedchem.7b00389

    Article  CAS  PubMed  Google Scholar 

  52. Ding, S., et al. (2019). Exploration of the structure-activity relationship and druggability of novel oxazolidinone-based compounds as Gram-negative antibacterial agents. Archiv der Pharmazie, 352, e1900129. https://doi.org/10.1002/ardp.201900129

    Article  CAS  PubMed  Google Scholar 

  53. Xue, T., et al. (2014). Design, synthesis, and structure-activity and structure-pharmacokinetic relationship studies of novel [6,6,5] tricyclic fused oxazolidinones leading to the discovery of a potent, selective, and orally bioavailable FXa inhibitor. Journal of Medicinal Chemistry, 57, 7770–7791. https://doi.org/10.1021/jm501045e

    Article  CAS  PubMed  Google Scholar 

  54. Lu, J., & Jiang, G. (2022). The journey of CAR-T therapy in hematological malignancies. Molecular Cancer, 21, 194. https://doi.org/10.1186/s12943-022-01663-0

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dimitri, A., Herbst, F., & Fraietta, J. A. (2022). Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Molecular Cancer, 21, 78. https://doi.org/10.1186/s12943-022-01559-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morgan, M. A., Büning, H., Sauer, M., & Schambach, A. (2020). Use of cell and genome modification technologies to generate improved “Off-the-Shelf” CAR T and CAR NK Cells. Frontiers in Immunology, 11, 1965. https://doi.org/10.3389/fimmu.2020.01965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roselli, E., et al. (2021). 4–1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells. Journal for Immunotherapy of Cancer, 9. https://doi.org/10.1136/jitc-2021-003354

  58. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., & June, C. H. (2011). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. The New England Journal of Medicine, 365, 725–733. https://doi.org/10.1056/NEJMoa1103849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Flugel, C. L., et al. (2023). Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nature Reviews. Clinical Oncology, 20, 49–62. https://doi.org/10.1038/s41571-022-00704-3

    Article  CAS  PubMed  Google Scholar 

  60. Shanmugasundaram, U., et al. (2020). Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment. JCI Insight, 5. https://doi.org/10.1172/jci.insight.137858

  61. Mestermann, K., et al. (2019). The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Science Translational Medicine, 11https://doi.org/10.1126/scitranslmed.aau5907

  62. Weber, E. W. et al. (2021). Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science (New York, N.Y.), 372https://doi.org/10.1126/science.aba1786

  63. Preman, N. K., Barki, R. R., Vijayan, A., Sanjeeva, S. G. & Johnson, R. P. (2020). Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E.V., 157, 121–153. https://doi.org/10.1016/j.ejpb.2020.10.009

  64. Molina, M., et al. (2015). Stimuli-responsive nanogel composites and their application in nanomedicine. Chemical Society Reviews, 44, 6161–6186. https://doi.org/10.1039/c5cs00199d

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen, N. T., et al. (2021). Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nature Nanotechnology, 16, 1424–1434. https://doi.org/10.1038/s41565-021-00982-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang, Z., et al. (2020). Engineering light-controllable CAR T cells for cancer immunotherapy. Science Advances, 6, eaay9209. https://doi.org/10.1126/sciadv.aay9209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsien, R. Y. (2003). Imagining imaging's future. Nature reviews. Molecular Cell Biology, Suppl, Ss16–21.

  68. Miller, I. C., et al. (2021). Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nature Biomedical Engineering, 5, 1348–1359. https://doi.org/10.1038/s41551-021-00781-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, Z., et al. (2021). Nanoengineered CAR-T biohybrids for solid tumor immunotherapy with microenvironment photothermal-remodeling strategy. Small (Weinheim an der Bergstrasse, Germany), 17, e2007494. https://doi.org/10.1002/smll.202007494

    Article  CAS  PubMed  Google Scholar 

  70. Thanou, M., & Gedroyc, W. (2013). MRI-guided focused ultrasound as a new method of drug delivery. Journal of Drug Delivery, 2013, 616197. https://doi.org/10.1155/2013/616197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A., & Shapiro, M. G. (2017). Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nature Chemical Biology, 13, 75–80. https://doi.org/10.1038/nchembio.2233

    Article  CAS  PubMed  Google Scholar 

  72. Jacob, P., Hirt, H., & Bendahmane, A. (2017). The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15, 405–414. https://doi.org/10.1111/pbi.12659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu, Y., et al. (2021). Control of the activity of CAR-T cells within tumours via focused ultrasound. Nature Biomedical Engineering, 5, 1336–1347. https://doi.org/10.1038/s41551-021-00779-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paszkiewicz, P. J., et al. (2016). Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. The Journal of Clinical Investigation, 126, 4262–4272. https://doi.org/10.1172/jci84813

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang, Q., et al. (2021). A transgene-encoded truncated human epidermal growth factor receptor for depletion of anti- B-cell maturation antigen CAR-T cells. Cellular Immunology, 363, 104342. https://doi.org/10.1016/j.cellimm.2021.104342

    Article  CAS  PubMed  Google Scholar 

  76. Philip, B., et al. (2014). A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood, 124, 1277–1287. https://doi.org/10.1182/blood-2014-01-545020

    Article  CAS  PubMed  Google Scholar 

  77. Gargett, T., & Brown, M. P. (2014). The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Frontiers in Pharmacology, 5, 235. https://doi.org/10.3389/fphar.2014.00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guercio, M. et al. (2021). Inclusion of the inducible caspase 9 suicide gene in CAR construct increases safety of CAR.CD19 T cell therapy in B-cell malignancies. Frontiers in Immunology, 12, 755639. https://doi.org/10.3389/fimmu.2021.755639

  79. Diaconu, I., et al. (2017). Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Molecular therapy : The journal of the American Society of Gene Therapy, 25, 580–592. https://doi.org/10.1016/j.ymthe.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  80. Roybal, K. T., et al. (2016). Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell, 167, 419-432.e416. https://doi.org/10.1016/j.cell.2016.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zheng, Y., Nandakumar, K. S., & Cheng, K. (2021). Optimization of CAR-T cell-based therapies using small-molecule-based safety switches. Journal of Medicinal Chemistry, 64, 9577–9591. https://doi.org/10.1021/acs.jmedchem.0c02054

    Article  CAS  PubMed  Google Scholar 

  82. Ma, J. S., et al. (2016). Versatile strategy for controlling the specificity and activity of engineered T cells. Proceedings of the National Academy of Sciences of the United States of America, 113, E450-458. https://doi.org/10.1073/pnas.1524193113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cao, Y., et al. (2016).Design of switchable chimeric antigen receptor T cells targeting breast cancer. Angewandte Chemie (International ed. in English), 55, 7520–7524. https://doi.org/10.1002/anie.201601902

  84. Kim, M. S., et al. (2015). Redirection of genetically engineered CAR-T cells using bifunctional small molecules. Journal of the American Chemical Society, 137, 2832–2835. https://doi.org/10.1021/jacs.5b00106

    Article  CAS  PubMed  Google Scholar 

  85. Qi, J., et al. (2020). Chemically programmable and switchable CAR-T therapy. Angewandte Chemie (International ed in English), 59, 12178–12185. https://doi.org/10.1002/anie.202005432

    Article  CAS  PubMed  Google Scholar 

  86. Choi, J., Chen, J., Schreiber, S. L., & Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science (New York, N.Y.)., 273, 239–242. https://doi.org/10.1126/science.273.5272.239

    Article  CAS  PubMed  Google Scholar 

  87. Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J., & Lim, W. A. (2015). Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science (New York, N.Y.), 350, aab4077. https://doi.org/10.1126/science.aab4077

    Article  CAS  PubMed  Google Scholar 

  88. Leung, W. H., et al. (2019) Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization. JCI Insight, 5. https://doi.org/10.1172/jci.insight.124430

  89. Bayle, J. H., et al. (2006). Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chemistry & Biology, 13, 99–107. https://doi.org/10.1016/j.chembiol.2005.10.017

    Article  CAS  Google Scholar 

  90. Blake, S., Hughes, T. P., Mayrhofer, G., & Lyons, A. B. (2008). The Src/ABL kinase inhibitor dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clinical Immunology (Orlando, Fla.)., 127, 330–339. https://doi.org/10.1016/j.clim.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  91. Allen, G. M., et al. (2022). Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science (New York, N.Y.), 378, eaba1624. https://doi.org/10.1126/science.aba1624

    Article  CAS  PubMed  Google Scholar 

  92. Lim, W. A. (2022). The emerging era of cell engineering: Harnessing the modularity of cells to program complex biological function. Science (New York N.Y.), 378, 848–852. https://doi.org/10.1126/science.add9665

    Article  CAS  PubMed  Google Scholar 

  93. Grosskopf, A. K., et al. (2022). Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Science Advances, 8, eabn8264. https://doi.org/10.1126/sciadv.abn8264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang, X., et al. (2021). DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nature Nanotechnology, 16, 214–223. https://doi.org/10.1038/s41565-020-00813-z

    Article  CAS  PubMed  Google Scholar 

  95. Maus, M. V., Grupp, S. A., Porter, D. L., & June, C. H. (2014). Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood, 123, 2625–2635. https://doi.org/10.1182/blood-2013-11-492231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hamieh, M., et al. (2019). CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature, 568, 112–116. https://doi.org/10.1038/s41586-019-1054-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sterner, R. C., & Sterner, R. M. (2021). CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer Journal, 11, 69. https://doi.org/10.1038/s41408-021-00459-7

    Article  PubMed  PubMed Central  Google Scholar 

  98. Martinez, M., & Moon, E. K. (2019). CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Frontiers in Immunology, 10, 128. https://doi.org/10.3389/fimmu.2019.00128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Miao, L., Zhang, Z., Ren, Z., & Li, Y. (2021). Reactions related to CAR-T cell therapy. Frontiers in Immunology, 12, 663201. https://doi.org/10.3389/fimmu.2021.663201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Totzeck, M., Michel, L., Lin, Y., Herrmann, J., & Rassaf, T. (2022). Cardiotoxicity from chimeric antigen receptor-T cell therapy for advanced malignancies. European Heart Journal, 43, 1928–1940. https://doi.org/10.1093/eurheartj/ehac106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Savoldo, B., et al. (2011). CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. The Journal of Clinical Investigation, 121, 1822–1826. https://doi.org/10.1172/jci46110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kalos, M., et al. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science Translational Medicine, 3, 95ra73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pegram, H. J., et al. (2012). Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood, 119, 4133–4141. https://doi.org/10.1182/blood-2011-12-400044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Choe, J. H. et al., (2021). SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Science Translational Medicine, 13. https://doi.org/10.1126/scitranslmed.abe7378

  105. Wang, Z., et al. (2022). 3D-organoid culture supports differentiation of human CAR(+) iPSCs into highly functional CAR T cells. Cell Stem Cell, 29, 515-527.e518. https://doi.org/10.1016/j.stem.2022.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. López-Cantillo, G., Urueña, C., Camacho, B. A., & Ramírez-Segura, C. (2022). CAR-T cell performance: How to improve their persistence? Frontiers in Immunology, 13, 878209. https://doi.org/10.3389/fimmu.2022.878209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao, K., et al. (2023). The altering cellular components and function in tumor microenvironment during remissive and relapsed stages of anti-CD19 CAR T-cell treated lymphoma mice. Frontiers in Immunology, 14, 1101769. https://doi.org/10.3389/fimmu.2023.1101769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kasakovski, D., Xu, L., & Li, Y. (2018). T cell senescence and CAR-T cell exhaustion in hematological malignancies. Journal of Hematology & Oncology, 11, 91. https://doi.org/10.1186/s13045-018-0629-x

    Article  CAS  Google Scholar 

  109. Napoleon, J. V., Zhang, B., Luo, Q., Srinivasarao, M., & Low, P. S. (2022). Design, synthesis, and targeted delivery of an immune stimulant that selectively reactivates exhausted CAR T cells. Angewandte Chemie (International ed. in English), 61, e202113341. https://doi.org/10.1002/anie.202113341

    Article  CAS  PubMed  Google Scholar 

  110. Zebley, C. C., & Youngblood, B. (2021). CAR T cells need a pitstop to win the race. Cancer Cell, 39, 756–758. https://doi.org/10.1016/j.ccell.2021.05.011

    Article  CAS  PubMed  Google Scholar 

  111. Tantalo, D. G., et al. (2021). Understanding T cell phenotype for the design of effective chimeric antigen receptor T cell therapies. Journal ForImmunotherapy of Cancer, 9. https://doi.org/10.1136/jitc-2021-002555

  112. Soerens, A. G., et al. (2023). Functional T cells are capable of supernumerary cell division and longevity. Nature, 614, 762–766. https://doi.org/10.1038/s41586-022-05626-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This document certifies that the manuscript listed below was edited for proper English language, grammar, punctuation, spelling, and overall style by one or more of the highly qualified native speakers at EditChecks.

Funding

This research was supported by the National Natural Science Foundation of China (No.: 82204541, 81972719, and 82273207), Natural Science Foundation of Jiangsu Province (No.: BK20210913, BK20220671, BK20210910, and BK20201012), and National science research in Universities of Jiangsu Province (No.: 21KJA320008, 22KJB320009, 20KJB320032, and 21KJB320021).

Author information

Authors and Affiliations

Authors

Contributions

Rui Hou and Xiaoxue Zhang: conceptualization, investigation, writing—original draft and prepared figures. Xu Wang, Xuan Zhao, Sijin Li, Zhangchun Guan, Jiang Cao: investigation and discussion. Dan Liu, Junnian Zheng, Ming Shi: conceptualization, supervision, funding acquisition, writing—review and editing.

Corresponding authors

Correspondence to Dan Liu, Junnian Zheng or Ming Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, R., Zhang, X., Wang, X. et al. In vivo manufacture and manipulation of CAR-T cells for better druggability. Cancer Metastasis Rev (2024). https://doi.org/10.1007/s10555-024-10185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-024-10185-8

Keywords

Navigation