Skip to main content

Advertisement

Log in

Immunological profiling of a panel of human ovarian cancer cell lines

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

The efficient identification of peptide antigens recognized by ovarian cancer-specific cytotoxic T lymphocytes (CTL) requires the use of well-characterized ovarian cancer cell lines. To develop such a panel of cell lines, 11 ovarian cancer cell lines were characterized for the expression of class I and class II major histocompatibility complex (MHC)-encoded molecules, 15 tumor antigens, and immunosuppressive cytokines [transforming growth factor β (TGF-β) and IL-10].

Methods

Class I MHC gene expression was determined by polymerase chain reaction (PCR), and class I and class II MHC protein expression was determined by flow cytometry. Tumor antigen expression was determined by a combination of polymerase chain reaction (PCR) and flow cytometry. Cytokine expression was determined by ELISA.

Results

Each of the ovarian cancer cell lines expresses cytokeratins, although each cell line does not express the same cytokeratins. One of the lines expresses CD90, which is associated with a fibroblast lineage. Each of the cell lines expresses low to moderate amounts of class I MHC molecules, and several of them express low to moderate amounts of class II MHC molecules. Using a combination of PCR and flow cytometry, it was determined that each cell line expressed between six and thirteen of fifteen antigens tested. Little to no TGF-β3 was produced by any of the cell lines, TGF-β1 was produced by three of the cell lines, TGF-β2 was produced by all of the cell lines, with four of the cell lines producing large amounts of the latent form of the molecule, and IL-10 was produced by one of the cell lines.

Conclusions

Each of the 11 ovarian cancer lines is characterized by a unique expression pattern of epithelial/fibroblast markers, MHC molecules, tumor antigens, and immunosuppressive cytokines. Knowledge of these unique expression patterns will increase the usefulness of these cell lines in identifying the antigens recognized by ovarian cancer-specific CTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

B-LCL:

B-lymphoblastoid cell line

CEA:

Carcinoembryonic antigen

CTL:

Cytotoxic T lymphocyte

Ck:

Cytokeratin

FBP:

Folate binding protein

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

mAb:

Monoclonal antibody

MHC:

Major histocompatibility complex

PCR:

Polymerase chain reaction

TGF-β:

Transforming growth factor β

References

  1. Ahmadzadeh M, Rosenberg SA (2005) TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol 174:5215–5223

    PubMed  CAS  Google Scholar 

  2. Akdis CA, Blaser K, Akdis CA, Blaser K (2001) Mechanisms of interleukin-10-mediated immune suppression. Immunology 103:131–136

    Article  PubMed  CAS  Google Scholar 

  3. Angus B, Purvis J, Stock D, Westley BR, Samson ACR, Routledge EG, Carpenter FH, Horne CHW (1987) NCL-5D3: a new monoclonal antibody recognizing low molecular weight cytokeratins effective for immunohistochemistry using fixed paraffin-embedded tissue. J Pathol 153:377–384

    Article  PubMed  CAS  Google Scholar 

  4. Babcock B, Anderson BW, Papayannopoulos I, Castilleja A, Murray JL, Stifani S, Kudelka AP, Wharton JT, Ioannides CG (1998) Ovarian and breast cytotoxic T lymphocytes can recognize peptides from the amino enhancer of split protein of the notch complex. Mol Immunol 35:1121–1133

    Article  PubMed  CAS  Google Scholar 

  5. Bartlett JM, Langdon SP, Scott WN, Love SB, Miller EP, Katsaros D, Smyth JF, Miller WR (1997) Transforming growth factor-β isoform expression in human ovarian tumours. Eur J Cancer 33:2397–2403

    Article  PubMed  CAS  Google Scholar 

  6. Berger AE, Davis JE, Cresswell P (1982) Monoclonal antibody to HLA-A3. Hybridoma 1:87–90

    PubMed  CAS  Google Scholar 

  7. Berger S, Siegert A, Denkert C, Kobel M, Hauptmann S (2001) Interleukin-10 in serous ovarian carcinoma cell lines. Cancer Immunol Immunother 50:328–333

    Article  PubMed  CAS  Google Scholar 

  8. Brasseur F, Marchand M, Vanwijck R, Herin M, Lethe B, Chomez P, Boon T (1992) Human gene MAGE-1, which codes for a tumor-rejection antigen, is expressed by some breast tumors. Int J Cancer 52:839–841

    Article  PubMed  CAS  Google Scholar 

  9. Brunetti M, Colasante A, Mascetra N, Piantelli M, Musiani P, Aiello FB (1998) IL-10 synergizes with dexamethasone in inhibiting human T cell proliferation. J Pharmacol Exp Ther 285:915–919

    PubMed  CAS  Google Scholar 

  10. Buick RN, Pullano R, Trent JM (1985) Comparative properties of five human ovarian adenocarcinoma cell lines. Cancer Res 45:3668–3676

    PubMed  CAS  Google Scholar 

  11. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  12. De Plaen E, Arden K, Traversari C, Gaforio JJ, Szikora JP, De Smet C, Brasseur F, van der Bruggen P, Lethe B, Lurquin C et al (1994) Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40:360–369

    Article  PubMed  CAS  Google Scholar 

  13. De Smet C, Lurquin C, Van der Bruggen P, De Plaen E, Brasseur F, Boon T (1994) Sequence and expression pattern of the human MAGE2 gene. Immunogenetics 39:121–129

    Article  PubMed  Google Scholar 

  14. Disis ML, Smith JW, Murphy AE, Chen W, Cheever MA (1994) In vitro generation of human cytolytic T-cells specific for peptides derived from the HER-2/neu protooncogene protein. Cancer Res 54:1071–1076

    PubMed  CAS  Google Scholar 

  15. Ellis SA, Taylor C, McMichael A (1982) Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum Immunol 5:49–59

    Article  PubMed  CAS  Google Scholar 

  16. Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181:2109–2117

    Article  PubMed  CAS  Google Scholar 

  17. Fogh J, Tremple G (1975) New human tumor cell lines. In: Fogh J (ed) Human tumor cell lines in vitro. Plenum Press, New York, pp 115–141

    Google Scholar 

  18. Fogh J, Wright WC, Loveless JD (1977) Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst 58:209–214

    PubMed  CAS  Google Scholar 

  19. Furlong MT, Hough CD, Sherman-Baust CA, Pizer ES, Morin PJ (1999) Evidence for the colonic origin of ovarian cancer cell line SW626. J Natl Cancer Inst 91:1327–1328

    Article  PubMed  CAS  Google Scholar 

  20. Gillespie AM, Rodgers S, Wilson AP, Tidy J, Rees RC, Coleman RE, Murray AK (1998) MAGE, BAGE and GAGE: tumour antigen expression in benign and malignant ovarian tissue. Br J Cancer 78:816–821

    PubMed  CAS  Google Scholar 

  21. Gordinier ME, Zhang HZ, Patenia R, Levy LB, Atkinson EN, Nash MA, Katz RL, Platsoucas CD, Freedman RS (1999) Quantitative analysis of transforming growth factor β1 and 2 in ovarian carcinoma. Clin Cancer Res 5:2498–2505

    PubMed  CAS  Google Scholar 

  22. Gotlieb WH, Abrams JS, Watson JM, Velu TJ, Berek JS, Martinez-Maza O (1992) Presence of interleukin 10 (IL-10) in the ascites of patients with ovarian and other intra-abdominal cancers. Cytokine 4:385–390

    Article  PubMed  CAS  Google Scholar 

  23. Hamilton TC, Young RC, McKoy WM, Grotzinger KR, Green JA, Chu EW, Whang-Peng J, Rogan AM, Green WR, Ozols RF (1983) Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res 43:5379–5389

    PubMed  CAS  Google Scholar 

  24. Haskill S, Becker S, Fowler W, Walton L (1982) Mononuclear-cell infiltration in ovarian cancer. I. Inflammatory-cell infiltrates from tumour and ascites material. Br J Cancer 45:728–736

    PubMed  CAS  Google Scholar 

  25. Hogan KT, Coppola MA, Gatlin CL, Thompson LW, Shabanowitz J, Hunt DF, Engelhard VH, Ross MM, Slingluff CL (2004) Identification of novel and widely expressed cancer/testis gene isoforms that elicit spontaneous cytotoxic T lymphocyte reactivity to melanoma. Cancer Res 64:1157–1163

    Article  PubMed  CAS  Google Scholar 

  26. Jager D, Jager E, Knuth A (2001) Immune responses to tumour antigens: Implications for antigen specific immunotherapy of cancer. J Clin Pathol 54:669–674

    PubMed  CAS  Google Scholar 

  27. Kabawat SE, Bast RC Jr, Welch WR, Knapp RC, Bhan AK (1983) Expression of major histocompatibility antigens and nature of inflammatory cellular infiltrate in ovarian neoplasms. Int J Cancer 32:547–554

    Article  PubMed  CAS  Google Scholar 

  28. Karlan BY, Amin W, Band V, Zurawski VR, Littlefield BA (1988) Plasminogen activator secretion by established lines of human ovarian carcinoma cells in vitro. Gynecol Oncol 31:103–112

    Article  PubMed  CAS  Google Scholar 

  29. Kim DK, Lee TV, Castilleja A, Anderson BW, Peoples GE, Kudelka AP, Murray JL, Sittisomwong T, Wharton JT, Kim JW, Ioannides CG (1999) Folate binding protein peptide 191–199 presented on dendritic cells can stimulate CTL from ovarian and breast cancer patients. Anticancer Res 19:2907–2916

    PubMed  CAS  Google Scholar 

  30. Kuppen PJK, Schuitemaker H, van’t Veer LJ, de Bruijn EA, van Oosterom AT, Schrier PI (1988) Cis-diamminedichloroplatinum(II)-resistant sublines derived from two human ovarian tumor cell lines. Cancer Res 48:3355–3359

    PubMed  CAS  Google Scholar 

  31. Lagendijk JH, Mullink H, Van Diest PJ, Meijer GA, Meijer CJLM (1998) Tracing the origin of adenocarcinomas with unknown primary using immunohistochemistry: differential diagnosis between colonic and ovarian carcinomas as primary sites. Hum Pathol 29:491–497

    Article  PubMed  CAS  Google Scholar 

  32. Lau DHM, Lewis AD, Ehsan MN, Sikic BI (1991) Multifactorial mechanisms associated with broad cross-resistance of ovarian carcinoma cells selected by cyanomorpholino doxorubicin. Cancer Res 51:5181–5187

    PubMed  CAS  Google Scholar 

  33. Maier JA, Voulalas P, Roeder D, Maciag T (1990) Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 249:1570–1574

    Article  PubMed  CAS  Google Scholar 

  34. Makin CA, Bobrow LG, Bodmer WF (1984) Monoclonal antibody to cytokeratin for use in routine histopathology. J Clin Pathol 37:975–983

    Article  PubMed  CAS  Google Scholar 

  35. Moll R, Franke WW, Schiller DL (1982) The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors, and cultured cells. Cell 31:11–24

    Article  PubMed  CAS  Google Scholar 

  36. Mule JJ, Schwarz SL, Roberts AB, Sporn MB, Rosenberg SA (1988) Transforming growth factor-beta inhibits the in vitro generation of lymphokine-activated killer cells and cytotoxic T cells. Cancer Immunol Immunother 26:95–100

    PubMed  CAS  Google Scholar 

  37. Nash MA, Lenzi R, Edwards CL, Kavanagh JJ, Kudelka AP, Verschraegen CF, Platsoucas CD, Freedman RS (1998) Differential expression of cytokine transcripts in human epithelial ovarian carcinoma by solid tumour specimens, peritoneal exudate cells containing tumour, tumour-infiltrating lymphocyte (TIL)-derived T cell lines and established tumour cell lines. Clin Exp Immunol 112:172–180

    Article  PubMed  CAS  Google Scholar 

  38. Negus RP, Stamp GW, Hadley J, Balkwill FR (1997) Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 150:1723–1734

    PubMed  CAS  Google Scholar 

  39. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207

    Article  PubMed  CAS  Google Scholar 

  40. Odunsi K, Jungbluth AA, Stockert E, Qian F, Gnjatic S, Tammela J, Intengan M, Beck A, Keitz B, Santiago D, Williamson B, Scanlan MJ, Ritter G, Chen Y-T, Driscoll D, Sood A, Lele S, Old LJ (2003) NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res 63:6076–6083

    PubMed  CAS  Google Scholar 

  41. Parham P, Barnstable CJ, Bodmer WF (1979) Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,b,c, antigens. J Immunol 123:342–349

    PubMed  CAS  Google Scholar 

  42. Parham P, Brodsky FM (1981) Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum Immunol 3:277–299

    Article  PubMed  CAS  Google Scholar 

  43. Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, Anichini A (2002) Cancer immunotherapy with peptide-based vaccines: What have we achieved? Where are we going? J Natl Cancer Inst 94:805–818

    PubMed  CAS  Google Scholar 

  44. Peoples GE, Anderson BW, Fisk B, Kudelka AP, Wharton JT, Ioannides CG (1998) Ovarian cancer-associated lymphocyte recognition of folate binding protein peptides. Ann Surg Oncol 5:743–750

    Article  PubMed  CAS  Google Scholar 

  45. Peoples GE, Anderson BW, Lee TV, Murray JL, Kudelka AP, Wharton JT, Ioannides CG (1999) Vaccine implications of folate binding protein, a novel cytotoxic T lymphocyte-recognized antigen system in epithelial cancers. Clin Cancer Res 5:4214–4223

    PubMed  CAS  Google Scholar 

  46. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ (1995) Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci U S A 92:432–436

    Article  PubMed  CAS  Google Scholar 

  47. Platsoucas CD, Fincke JE, Pappas J, Jung WJ, Heckel M, Schwarting R, Magira E, Monos D, Freedman RS (2003) Immune responses to human tumors: development of tumor vaccines. Anticancer Res 23:1969–1996

    PubMed  CAS  Google Scholar 

  48. Provencher DM, Lounis H, Champoux L, Tetrault M, Manderson EN, Wang JC, Eydoux P, Savoie R, Tonin PN, Mes-Masson AM, Provencher DM, Lounis H, Champoux L, Tetrault M, Manderson EN, Wang JC, Eydoux P, Savoie R, Tonin PN, Mes-Masson AM (2000) Characterization of four novel epithelial ovarian cancer cell lines. In Vitro Cell Dev Biol Anim 36:357–361

    Article  PubMed  CAS  Google Scholar 

  49. Ranges GE, Figari IS, Espevik T, Palladino MA (1987) Inhibition of cytotoxic T cell development by transforming growth factor β and reversal by recombinant tumor necrosis factor α. J Exp Med 166:991–998

    Article  PubMed  CAS  Google Scholar 

  50. Rimoldi D, Salvi S, Schultz-Thater E, Spagnoli GC, Cerottini JC (2000) Anti-MAGE-3 antibody 57B and anti-MAGE-1 antibody 6C1 can be used to study different proteins in the MAGE-A family. Int J Cancer 86:749–751

    Article  PubMed  CAS  Google Scholar 

  51. Rosenberg SA (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10:281–287

    Article  PubMed  CAS  Google Scholar 

  52. Russo C, Ng AK, Pellegrino MA, Ferrone S (1983) The monoclonal antibody CR11-351 discriminates HLA-A2 variants identified by T cells. Immunogenetics 18:23–35

    Article  PubMed  CAS  Google Scholar 

  53. Saalbach A, Anderegg U, Bruns M, Schnabel E, Herrmann K, Haustein UF (1996) Novel fibroblast-specific monoclonal antibodies: properties and specificities. J Investig Dermatol 106:1314–1319

    Article  PubMed  CAS  Google Scholar 

  54. Saalbach A, Aust G, Herrmann K, Anderegg U (1997) The fibroblast-specific mab AS02: a novel tool for detection and elimination of human fibroblasts. Cell Tissue Res 290:593–599

    Article  PubMed  CAS  Google Scholar 

  55. Santin AD, Bellone S, Ravaggi A, Roman J, Smith CV, Pecorelli S, Cannon MJ, Parham GP (2001) Increased levels of interleukin-10 and transforming growth factor-β in the plasma and ascitic fluid of patients with advanced ovarian cancer. Br J Obstet Gynaecol 108:804–808

    Article  CAS  Google Scholar 

  56. Santin AD, Hermonat PL, Ravaggi A, Bellone S, Roman JJ, Smith CV, Pecorelli S, Radominska-Pandya A, Cannon MJ, Parham GP (2001) Phenotypic and functional analysis of tumor-infiltrating lymphocytes compared with tumor-associated lymphocytes from ascitic fluid and peripheral blood lymphocytes in patients with advanced ovarian cancer. Gynecol Obstet Invest 51:254–261

    Article  PubMed  CAS  Google Scholar 

  57. Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12:3–13

    Article  PubMed  CAS  Google Scholar 

  58. Slingluff CL Jr., Hunt DF, Engelhard VH (1994) Direct analysis of tumor-associated peptide antigens. Curr Opin Immunol 6:733–740

    Article  PubMed  CAS  Google Scholar 

  59. Smedts F, Ramaekers F, Robben H, Pruszczynski Van Muijen G, Lane B, Leigh I, Vooijs P (1990) Changing patterns of keratin expression during progression of cervical intraepithelial neoplasia. Am J Pathol 136:657–668

    PubMed  CAS  Google Scholar 

  60. Stimpfl M, Schmid BC, Schiebel I, Tong D, Leodolter S, Obermair A, Zeillinger R (1999) Expression of mucins and cytokeratins in ovarian cancer cell lines. Cancer Lett 145:133–141

    Article  PubMed  CAS  Google Scholar 

  61. Thomas DA, Massague J (2005) TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380

    Article  PubMed  CAS  Google Scholar 

  62. Toutirais O, Chartier P, Dubois D, Bouet F, Leveque J, Catros-Quemener V, Genetet N (2003) Constitutive expression of TGF-beta1, interleukin-6 and interleukin-8 by tumor cells as a major component of immune escape in human ovarian carcinoma. Eur Cytokine Netw 14:246–255

    PubMed  CAS  Google Scholar 

  63. Wallick SC, Figari IS, Morris RE, Levinson AD, Palladino MA (1990) Immunoregulatory role of transforming growth factor β (TGF-β) in development of killer cells: comparison of active and latent TGF-β1. J Exp Med 172:1777–1784

    Article  PubMed  CAS  Google Scholar 

  64. Wang RF, Johnston SL, Zeng G, Topalian SL, Schwartzentruber DJ, Rosenberg SA (1998) A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J Immunol 161:3598–3606

    PubMed  CAS  Google Scholar 

  65. Yamada A, Kataoka A, Shichijo S, Kamura T, Imai Y, Nishida T, Itoh K (1995) Expression of MAGE-1, MAGE-2, MAGE-3/-6 and MAGE-4a/-4b genes in ovarian tumors. Int J Cancer 64:388–393

    Article  PubMed  CAS  Google Scholar 

  66. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant W81XWH-05-1-0012 from the United States Department of Defense to K. T. Hogan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin T. Hogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, T.M., Adair, S.J., Fink, M.J. et al. Immunological profiling of a panel of human ovarian cancer cell lines. Cancer Immunol Immunother 57, 31–42 (2008). https://doi.org/10.1007/s00262-007-0347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0347-7

Keywords

Navigation