Skip to main content

Advertisement

Log in

Immunotherapy of myeloid leukaemia

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The treatment of myeloid leukaemia has progressed in recent years with the advent of donor leukocyte infusions (DLI), haemopoietic stem cell transplants (HSCTs) and targeted therapies. However, relapse has a high associated morbidity rate and a method for removing diseased cells in first remission, when a minimal residual disease state is achieved and tumour load is low, has the potential to extend remission times and prevent relapse especially when used in combination with conventional treatments. Acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) are heterogeneous diseases which lack one common molecular target while chronic myeloid leukaemia (CML) patients have experienced prolonged remissions through the use of targeted therapies which remove BCR-ABL+ cells effectively in early chronic phase. However, escape mutants have arisen and this therapy has little effectivity in the late chronic phase. Here we review the immune therapies which are close to or in clinical trials for the myeloid leukaemias and describe their potential advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ab:

antibody

AML:

acute myeloid leukaemia

APC:

antigen presenting cells

APL:

acute promyelocytic leukaemia

ATRA:

all trans-retinoic acid

CML:

chronic myeloid leukaemia

CT:

cancer-testis

CTL:

cytotoxic T-lymphocyte

DC:

dendritic cell

DLI:

donor leukocyte infusion

FLT3:

FMS-like tyrosine kinase 3

GvL:

graft versus leukaemia

HSCT:

haemopoietic stem cell transplant

LAA:

leukaemia associated antigen

MDS:

myelodysplastic syndrome

NK:

natural killer

OFA-iLRP:

Oncofetal antigen-immature laminin receptor

pMHC:

peptide-MHC

PRAME:

preferentially expressed antigen of melanoma

RHAMM:

receptor for hyaluronic acid-mediated motility

RIC:

reduced intensity conditioning

SEREX:

serological analysis of recombinant cDNA expression libraries

SNPs:

single nucleotide polymorphisms

TCR:

T cell receptor

TRAIL:

tumour necrosis factor α-related apoptosis-inducing ligand

WT-1:

Wilm’s Tumour-1

References

  1. Adams SP, Sahota SS, Mijovic A, Czepulkowski B, Padua RA, Mufti GJ, Guinn BA (2002) Frequent expression of HAGE in presentation chronic myeloid leukaemias. Leukemia 16:2238–2242

    Article  PubMed  CAS  Google Scholar 

  2. Andersen MH, Svane IM, Kvistborg P, Nielsen OJ, Balslev E, Reker S, Becker JC, Straten PT (2005) Immunogenicity of Bcl-2 in patients with cancer. Blood 105:728–734

    Article  PubMed  CAS  Google Scholar 

  3. Bae J, Martinson JA, Klingemann HG (2004) Heteroclitic CD33 peptide with enhanced anti-acute myeloid leukemic immunogenicity. Clin Cancer Res 10:7043–7052

    Article  PubMed  CAS  Google Scholar 

  4. Bocchia M, Gentili S, Abruzzese E, Fanelli A, Iuliano F, Tabilio A, Amabile M, Forconi F, Gozzetti A, Raspadori D, Amadori S, Lauria F (2005) Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 365:657–662

    PubMed  CAS  Google Scholar 

  5. Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, Hirst WJ (2001) Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol 167:6021–6030

    PubMed  CAS  Google Scholar 

  6. Bullinger L, Valk PJ (2005) Gene expression profiling in acute myeloid leukemia. J Clin Oncol 23:6296–6305

    Article  PubMed  CAS  Google Scholar 

  7. Cathcart K, Pinilla-Ibarz J, Korontsvit T, Schwartz J, Zakhaleva V, Papadopoulos EB, Scheinberg DA (2004) A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103:1037–1042

    Article  PubMed  CAS  Google Scholar 

  8. Chambost H, Brasseur F, Coulie P, de Plaen E, Stoppa AM, Baume D, Mannoni P, Boon T, Maraninchi D, Olive D (1993) A tumour-associated antigen expression in human haematological malignancies. Br J Haematol 84:524–526

    PubMed  CAS  Google Scholar 

  9. Chambost H, van Baren N, Brasseur F, Olive D (2001) MAGE-A genes are not expressed in human leukemias. Leukemia 15:1769–1771

    PubMed  CAS  Google Scholar 

  10. Chan L, Hardwick N, Darling D, Galea-Lauri J, Gaken J, Devereux S, Kemeny M, Mufti G, Farzaneh F (2005) IL-2/B7.1 (CD80) fusagene transduction of AML blasts by a self-inactivating lentiviral vector stimulates T cell responses in vitro: a strategy to generate whole cell vaccines for AML. Mol Ther 11:120–131

    Article  PubMed  CAS  Google Scholar 

  11. Chan L, Hardwick NR, Guinn BA, Darling D, Gaken J, Galea-Lauri J, Ho AY, Mufti GJ, Farzaneh F (2006) An immune edited tumour versus a tumour edited immune system: prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol Immunother 55:1017–1024

    Article  PubMed  CAS  Google Scholar 

  12. Chen DS, Soen Y, Stuge TB, Lee PP, Weber JS, Brown PO, Davis MM (2005) Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray. PLoS Med 2:e265

    Article  PubMed  CAS  Google Scholar 

  13. Chen G, Zhang W, Cao X, Li F, Liu X, Yao L (2005) Serological identification of immunogenic antigens in acute monocytic leukemia. Leuk Res 29:503–509

    Article  PubMed  CAS  Google Scholar 

  14. Cheuk AT, Chan L, Czepulkowski B, Berger SA, Yagita H, Okumura K, Farzaneh F, Mufti GJ, Guinn BA (2006) Development of a whole cell vaccine for acute myeloid leukaemia. Cancer Immunol Immunother 55:68–75

    Article  PubMed  Google Scholar 

  15. Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR, Rojas J, Bourdon A, Bonner PL, Wang L, Christmas SE, Travers PJ, Creaser CS, Rees RC, Madrigal JA (2001) Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood 98:2887–2893

    Article  PubMed  CAS  Google Scholar 

  16. Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q, Dimopoulos N, Luke T, Murphy R, Scott AM, Maraskovsky E, McArthur G, MacGregor D, Sturrock S, Tai TY, Green S, Cuthbertson A, Maher D, Miloradovic L, Mitchell SV, Ritter G, Jungbluth AA, Chen YT, Gnjatic S, Hoffman EW, Old LJ, Cebon JS (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci USA 101:10697–10702

    Article  PubMed  CAS  Google Scholar 

  17. Gaiger A, Reese V, Disis ML, Cheever MA (2000) Immunity to WT1 in the animal model and in patients with acute myeloid leukemia. Blood 96:1480–1489

    PubMed  CAS  Google Scholar 

  18. Galea-Lauri J (2002) Immunological weapons against acute myeloid leukaemia. Immunology 107:20–27

    Article  PubMed  CAS  Google Scholar 

  19. Gannage M, Abel M, Michallet AS, Delluc S, Lambert M, Giraudier S, Kratzer R, Niedermann G, Saveanu L, Guilhot F, Camoin L, Varet B, Buzyn A, Caillat-Zucman S (2005) Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J Immunol 174:8210–8218

    PubMed  CAS  Google Scholar 

  20. Greiner J, Li L, Ringhoffer M, Barth TF, Giannopoulos K, Guillaume P, Ritter G, Wiesneth M, Dohner H, Schmitt M (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106:938–945

    Article  PubMed  CAS  Google Scholar 

  21. Greiner J, Ringhoffer M, Simikopinko O, Szmaragowska A, Huebsch S, Maurer U, Bergmann L, Schmitt M (2000) Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol 28:1413–1422

    Article  PubMed  CAS  Google Scholar 

  22. Greiner J, Ringhoffer M, Taniguchi M, Hauser T, Schmitt A, Dohner H, Schmitt M (2003) Characterization of several leukemia-associated antigens inducing humoral immune responses in acute and chronic myeloid leukemia. Int J Cancer 106:224–231

    Article  PubMed  CAS  Google Scholar 

  23. Greiner J, Ringhoffer M, Taniguchi M, Li L, Schmitt A, Shiku H, Dohner H, Schmitt M (2004) mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer 108:704–711

    Article  PubMed  CAS  Google Scholar 

  24. Greiner J, Schmitt M, Li L, Giannopoulos K, Bosch K, Schmitt A, Dohner K, Schlenk RF, Pollack JR, Dohner H, Bullinger L (2006) Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood. DOI 10.1182/blood-2006-01-023127

  25. Guinn BA, Bland EA, Lodi U, Liggins AP, Tobal K, Petters S, Wells JW, Banham AH, Mufti GJ (2005) Humoral detection of leukaemia-associated antigens in presentation acute myeloid leukaemia. Biochem Biophys Res Commun 335:1293–1304

    Article  PubMed  CAS  Google Scholar 

  26. Guinn BA, Gilkes AF, Mufti GJ, Burnett AK, Mills KI (2006) The tumour antigens RAGE-1 and MGEA6 are expressed more frequently in the less lineage restricted subgroups of presentation acute myeloid leukaemia. Br J Haematol 134:238–239

    Article  PubMed  CAS  Google Scholar 

  27. Guinn BA, Gilkes AF, Woodward E, Westwood NB, Mufti GJ, Linch D, Burnett AK, Mills KI (2005) Microarray analysis of tumour antigen expression in presentation acute myeloid leukaemia. Biochem Biophys Res Commun 333:703–713

    Article  PubMed  CAS  Google Scholar 

  28. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    Article  PubMed  CAS  Google Scholar 

  29. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, Kita K, Hiraoka A, Masaoka T, Nasu K (1994) WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84:3071–3079

    PubMed  CAS  Google Scholar 

  30. The International HapMap Project (2003) Nature 426:789–796

    Google Scholar 

  31. Jager D, Taverna C, Zippelius A, Knuth A (2004) Identification of tumor antigens as potential target antigens for immunotherapy by serological expression cloning. Cancer Immunol Immunother 53:144–147

    Article  PubMed  CAS  Google Scholar 

  32. Jager E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jager D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A (2000) Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA 97:4760–4765

    Article  PubMed  CAS  Google Scholar 

  33. John AM, Thomas NS, Mufti GJ, Padua RA (2004) Targeted therapies in myeloid leukemia. Semin Cancer Biol 14:41–62

    Article  PubMed  CAS  Google Scholar 

  34. Kaufmann SH, Steensma DP (2005) On the TRAIL of a new therapy for leukemia. Leukemia 19:2195–2202

    Article  PubMed  CAS  Google Scholar 

  35. Knights AJ, Weinzierl AO, Flad T, Guinn BA, Mueller L, Mufti GJ, Stevanovic S, Pawelec G (2006) A novel MHC-associated proteinase 3 peptide isolated from primary chronic myeloid leukaemia cells further supports the significance of this antigen for the immunotherapy of myeloid leukaemias. Leukemia 20:1067–1072

    Article  PubMed  CAS  Google Scholar 

  36. Kolb HJ, Rank A, Chen X, Woiciechowsky A, Roskrow M, Schmid C, Tischer J, Ledderose G (2004) In-vivo generation of leukaemia-derived dendritic cells. Best Pract Res Clin Haematol 17:439–451

    Article  PubMed  CAS  Google Scholar 

  37. Koya RC, Kasahara N, Pullarkat V, Levine AM, Stripecke R (2002) Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses. Leukemia 16:1645–1654

    Article  PubMed  CAS  Google Scholar 

  38. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353:172–187

    Article  PubMed  CAS  Google Scholar 

  39. Kufner S, Fleischer RP, Kroell T, Schmid C, Zitzelsberger H, Salih H, de Valle F, Treder W, Schmetzer HM (2005) Serum-free generation and quantification of functionally active Leukemia-derived DC is possible from malignant blasts in acute myeloid leukemia and myelodysplastic syndromes. Cancer Immunol Immunother 54:953–970

    Article  PubMed  CAS  Google Scholar 

  40. Li L, Reinhardt P, Schmitt A, Barth TF, Greiner J, Ringhoffer M, Dohner H, Wiesneth M, Schmitt M (2005) Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother 54:685–693

    Article  PubMed  CAS  Google Scholar 

  41. Li Y, Li H, Wang MN, Lu D, Bassi R, Wu Y, Zhang H, Balderes P, Ludwig DL, Pytowski B, Kussie P, Piloto O, Small D, Bohlen P, Witte L, Zhu Z, Hicklin DJ (2004) Suppression of leukemia expressing wild-type or ITD-mutant FLT3 receptor by a fully human anti-FLT3 neutralizing antibody. Blood 104:1137–1144

    Article  PubMed  CAS  Google Scholar 

  42. Lim SH, Austin S, Owen-Jones E, Robinson L (1999) Expression of testicular genes in haematological malignancies. Br J Cancer 81:1162–1164

    Article  PubMed  CAS  Google Scholar 

  43. Lowenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341:1051–1062

    Article  PubMed  CAS  Google Scholar 

  44. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856

    Article  PubMed  CAS  Google Scholar 

  45. Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U (2004) Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 18:165–166

    Article  PubMed  CAS  Google Scholar 

  46. Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA, van Luxemburg-Heys SA, Hoogeboom M, Mutis T, Drijfhout JW, van Rood JJ, Willemze R, Falkenburg JH (2003) Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 100:2742–2747

    Article  PubMed  CAS  Google Scholar 

  47. Mathews V, DiPersio JF (2004) Stem cell transplantation in acute myelogenous leukemia in first remission: what are the options? Curr Hematol Rep 3:235–241

    PubMed  Google Scholar 

  48. Matsushita M, Ikeda H, Kizaki M, Okamoto S, Ogasawara M, Ikeda Y, Kawakami Y (2001) Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol 112:916–926

    Article  PubMed  CAS  Google Scholar 

  49. Matsushita M, Yamazaki R, Ikeda H, Kawakami Y (2003) Preferentially expressed antigen of melanoma (PRAME) in the development of diagnostic and therapeutic methods for hematological malignancies. Leuk Lymphoma 44:439–444

    Article  PubMed  CAS  Google Scholar 

  50. Meletis J, Viniou N, Terpos E (2006) Novel agents for the management of myelodysplastic syndromes. Med Sci Monit 12:RA194–RA206

    PubMed  CAS  Google Scholar 

  51. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  PubMed  CAS  Google Scholar 

  52. Morris E, Hart D, Gao L, Tsallios A, Xue SA, Stauss H (2006) Generation of tumor-specific T-cell therapies. Blood Rev 20:61–69

    Article  PubMed  CAS  Google Scholar 

  53. Mulford DA, Jurcic JG (2004) Antibody-based treatment of acute myeloid leukaemia. Expert Opin Biol Ther 4:95–105

    Article  PubMed  CAS  Google Scholar 

  54. Ohno R, Nakamura Y (2003) Prediction of response to imatinib by cDNA microarray analysis. Semin Hematol 40:42–49

    PubMed  CAS  Google Scholar 

  55. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H, Elisseeva OA, Oji Y, Kawakami M, Ikegame K, Hosen N, Yoshihara S, Wu F, Fujiki F, Murakami M, Masuda T, Nishida S, Shirakata T, Nakatsuka S, Sasaki A, Udaka K, Dohy H, Aozasa K, Noguchi S, Kawase I, Sugiyama H (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 101:13885–13890

    Article  PubMed  CAS  Google Scholar 

  56. Ota J, Yamashita Y, Okawa K, Kisanuki H, Fujiwara S, Ishikawa M, Lim Choi Y, Ueno S, Ohki R, Koinuma K, Wada T, Compton D, Kadoya T, Mano H (2003) Proteomic analysis of hematopoietic stem cell-like fractions in leukemic disorders. Oncogene 22:5720–5728

    Article  PubMed  CAS  Google Scholar 

  57. Padua RA, Larghero J, Robin M, le Pogam C, Schlageter MH, Muszlak S, Fric J, West R, Rousselot P, Phan TH, Mudde L, Teisserenc H, Carpentier AF, Kogan S, Degos L, Pla M, Bishop JM, Stevenson F, Charron D, Chomienne C (2003) PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nat Med 9:1413–1417

    Article  PubMed  CAS  Google Scholar 

  58. Palmowski MJ, Choi EM, Hermans IF, Gilbert SC, Chen JL, Gileadi U, Salio M, Van Pel A, Man S, Bonin E, Liljestrom P, Dunbar PR, Cerundolo V (2002) Competition between CTL narrows the immune response induced by prime-boost vaccination protocols. J Immunol 168:4391–4398

    PubMed  CAS  Google Scholar 

  59. Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J, Lai L, Jimenez J, Kolitz J, Scheinberg DA (2000) Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 95:1781–1787

    PubMed  CAS  Google Scholar 

  60. Pinilla-Ibarz J, May RJ, Korontsvit T, Gomez M, Kappel B, Zakhaleva V, Zhang RH, Scheinberg DA (2006) Improved human T-cell responses against synthetic HLA-0201 analog peptides derived from the WT1 oncoprotein. Leukemia 20:2025–2033

    Article  PubMed  CAS  Google Scholar 

  61. Porter DL, Antin JH (2006) Donor leukocyte infusions in myeloid malignancies: new strategies. Best Pract Res Clin Haematol 19:737–755

    Article  PubMed  CAS  Google Scholar 

  62. Qazilbash MH, Wieder E, Rios R, Sijie L, Kant S, Giralt S, Estey EH, Thall P, de Lima M, Couriel D, et al (2004) Vaccination wth the PR1 leukaemia-associated antigen can induce complete remission in patients with myeloid leukaemia. Blood 104:259 (abstract)

    Google Scholar 

  63. Raghavan M, Lillington DM, Skoulakis S, Debernardi S, Chaplin T, Foot NJ, Lister TA, Young BD (2005) Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res 65:375–378

    PubMed  CAS  Google Scholar 

  64. Reichardt VL, Brossart P (2005). Current status of vaccination therapy for leukemias. Curr Hematol Rep 4:73–76

    PubMed  CAS  Google Scholar 

  65. Robin M, Schlageter MH, Chomienne C, Padua RA (2005) Targeted immunotherapy in acute myeloblastic leukemia: from animals to humans. Cancer Immunol Immunother 54:933–943

    Article  PubMed  CAS  Google Scholar 

  66. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810–11813

    Article  PubMed  CAS  Google Scholar 

  67. Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1

    PubMed  Google Scholar 

  68. Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, Baerwolf S, Nagorsen D, Keilholz U (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100:2132–2137

    Article  PubMed  CAS  Google Scholar 

  69. Schirrmann T, Pecher G (2005) Specific targeting of CD33(+) leukemia cells by a natural killer cell line modified with a chimeric receptor. Leuk Res 29:301–306

    Article  PubMed  CAS  Google Scholar 

  70. Scott BL, Deeg HJ (2005) Hemopoietic cell transplantation for the myelodysplastic syndromes. Arch Immunol Ther Exp 53:297–307

    Google Scholar 

  71. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53–65

    Article  PubMed  CAS  Google Scholar 

  72. Siegel S, Steinmann J, Schmitz N, Stuhlmann R, Dreger P, Zeis M (2004) Identification of a survivin-derived peptide that induces HLA-A*0201-restricted antileukemia cytotoxic T lymphocytes. Leukemia 18:2046–2047

    Article  PubMed  CAS  Google Scholar 

  73. Siegel S, Wagner A, Kabelitz D, Marget M, Coggin J Jr, Barsoum A, Rohrer J, Schmitz N, Zeis M (2003) Induction of cytotoxic T-cell responses against the oncofetal antigen-immature laminin receptor for the treatment of hematologic malignancies. Blood 102:4416–4423

    Article  PubMed  CAS  Google Scholar 

  74. Soen Y, Chen DS, Kraft DL, Davis MM, Brown PO (2003) Detection and characterization of cellular immune responses using peptide-MHC microarrays. PLoS Biol 1:E65

    Article  PubMed  Google Scholar 

  75. Tagliafico E, Tenedini E, Manfredini R, Grande A, Ferrari F, Roncaglia E, Bicciato S, Zini R, Salati S, Bianchi E, Gemelli C, Montanari M, Vignudelli T, Zanocco-Marani T, Parenti S, Paolucci P, Martinelli G, Piccaluga PP, Baccarani M, Specchia G, Torelli U, Ferrari S (2006) Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia. Leukemia 20:1751–1758

    Article  PubMed  CAS  Google Scholar 

  76. Tsuji T, Yasukawa M, Matsuzaki J, Ohkuri T, Chamoto K, Wakita D, Azuma T, Niiya H, Miyoshi H, Kuzushima K, Oka Y, Sugiyama H, Ikeda H, Nishimura T (2005) Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood 106:470–476

    Article  PubMed  CAS  Google Scholar 

  77. Van Driessche A, Gao L, Stauss HJ, Ponsaerts P, Van Bockstaele DR, Berneman ZN, Van Tendeloo VF (2005) Antigen-specific cellular immunotherapy of leukemia. Leukemia 19:1863–1871

    Article  PubMed  CAS  Google Scholar 

  78. Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100:2292–2302

    Article  PubMed  CAS  Google Scholar 

  79. Villuendas R, Steegmann JL, Pollan M, Tracey L, Granda A, Fernandez-Ruiz E, Casado LF, Martinez J, Martinez P, Lombardia L, Villalon L, Odriozola J, Piris MA (2006) Identification of genes involved in imatinib resistance in CML: a gene-expression profiling approach. Leukemia 20:1047–1054

    Article  PubMed  CAS  Google Scholar 

  80. Walz C, Sattler M (2006) Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol 57:145–164

    PubMed  Google Scholar 

  81. Wang Z, Zhang Y, Liu H, Salati E, Chiriva-Internati M, Lim SH (2003) Gene expression and immunologic consequence of SPAN-Xb in myeloma and other hematologic malignancies. Blood 101:955–960

    Article  PubMed  CAS  Google Scholar 

  82. Wang Z, Zhang Y, Mandal A, Zhang J, Giles FJ, Herr JC, Lim SH (2004) The spermatozoa protein, SLLP1, is a novel cancer-testis antigen in hematologic malignancies. Clin Cancer Res 10:6544–6550

    Article  PubMed  CAS  Google Scholar 

  83. Whiteside TL, Gooding W (2003) Immune monitoring of human gene therapy trials: potential application to leukemia and lymphoma. Blood Cells Mol Dis 31:63–71

    Article  PubMed  CAS  Google Scholar 

  84. Xue SA, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A, Apperley J, Engels B, Uckert W, Morris E, Stauss H (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 106:3062–3067

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Nigel Westwood, Dr. Shahram Kordasti and Dr. Wendy Ingram for their critical review of the manuscript. B.G. is funded by the Leukaemia Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara-Ann Guinn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guinn, BA., Mohamedali, A., Thomas, N.S.B. et al. Immunotherapy of myeloid leukaemia. Cancer Immunol Immunother 56, 943–957 (2007). https://doi.org/10.1007/s00262-006-0267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0267-y

Keywords

Navigation