Skip to main content

Advertisement

Log in

Development of a whole cell vaccine for acute myeloid leukaemia

  • Symposium Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We describe the modification of tumour cells to enhance their capacity to act as antigen presenting cells with particular focus on the use of costimulatory molecules to do so. We have been involved in the genetic modification of tumour cells to prepare a whole cell vaccine for nearly a decade and we have a particular interest in acute myeloid leukaemia (AML). AML is an aggressive and difficult to treat disease, especially, for patients for whom haematopoietic stem cell (HSC) transplant is not an option. AML patients who have a suitable donor and meet HSC transplant fitness requirements, have a 5-year survival of 50%; however, for patients with no suitable donor or for who age is a factor, the prognosis is much worse. It is particularly poor prognosis patients, who are not eligible for HSC transplant, who are likely to benefit most from immunotherapy. It would be hoped that immunotherapy would be used to clear residual tumour cells in these patients in the first remission following standard chemotherapy treatments and this will extend the remission and reduce the risk of a second relapse associated with disease progression and poor mortality rates. In this symposia report, we will focus on whole cell vaccines as an immunotherapeutic option with particular reference to their use in the treatment of AML. We will aim to provide a brief overview of the latest data from our group and considerations for the use of this treatment modality in clinical trials for AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukaemia

MDS:

Myelodysplastic syndrome

MHC:

Major histocompatability complex

APC:

Antigen presenting cells

HSC:

Haematopoietic stem cell

4-1BBL:

4-1BB ligand

Th:

T helper

s.c:

Sub-cutaneous

References

  1. Barry SC, Harder B, Brzezinski M, Flint LY, Seppen J, Osborne WR (2001) Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther 12:1103–1108

    Article  PubMed  CAS  Google Scholar 

  2. Baum C, Hegewisch-Becker S, Eckert HG, Stocking C, Ostertag W (1995) Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells. J Virol 69:7541–7547

    PubMed  CAS  Google Scholar 

  3. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33:451–458

    PubMed  CAS  Google Scholar 

  4. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P (1987) A new member of the immunoglobulin superfamily—CTLA-4. Nature 328:267–270

    Article  PubMed  CAS  Google Scholar 

  5. Brunning RD (2003) Classification of acute leukemias. Semin Diagn Pathol 20:142–153

    Article  PubMed  Google Scholar 

  6. Buggins AG, Lea N, Gaken J, Darling D, Farzaneh F, Mufti GJ, Hirst WJ (1999) Effect of costimulation and the microenvironment on antigen presentation by leukemic cells. Blood 94:3479–3490

    PubMed  CAS  Google Scholar 

  7. Burnet M (1957) Cancer—a biological approach. III. Viruses associated with neoplastic conditions. Br Med J 1:841–847

    Article  PubMed  CAS  Google Scholar 

  8. Chan L, Hardwick N, Darling D, Galea-Lauri J, Gäken J, Devereux S, Kemeny M, Mufti GJ, Farzaneh F (2004) IL-2/B7.1 fusagene transduction of AML blasts by a self-inactivating lentiviral vector stimulates T-cell responses in vitro: a strategy to generate whole cell vaccines for AML. Mol Ther11:120–131

    Article  CAS  Google Scholar 

  9. Chen L, McGowan P, Ashe S, Johnston J, Li Y, Hellstrom I, Hellstrom KE (1994) Tumour immunogenicity determines the effect of B7 costimulation on T-cell mediated immunity. J Exp Med 179:523

    Article  PubMed  CAS  Google Scholar 

  10. Cheuk AT, Mufti GJ, Guinn BA (2004) Role of 4-1BB:4-1BB ligand in cancer immunotherapy. Cancer Gene Ther 11:215–226

    Article  PubMed  CAS  Google Scholar 

  11. Costello RT, Mallet F, Sainty D, Maraninchi D, Gastaut JA, Olive D (1998) Regulation of CD80/B7-1 and CD86/B7-2 molecule expression in human primary acute myeloid leukemia and their role in allogenic immune recognition. Eur J Immunol 28:90–103

    Article  PubMed  CAS  Google Scholar 

  12. Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 3:609–620

    Article  PubMed  CAS  Google Scholar 

  13. Croft M (2003) Costimulation of T cells by OX40, 4-1BB, and CD27. Cytokine Growth Factor Rev 14:265–273

    Article  PubMed  CAS  Google Scholar 

  14. DeBenedette MA, Chu NR, Pollok KE, Hurtado J, Wade WF, Kwon BS, Watts TH (1995) Role of 4-1BB ligand in costimulation of T lymphocyte growth and its upregulation on M12 B lymphomas by cAMP. J Exp Med 181:985–992

    Article  PubMed  CAS  Google Scholar 

  15. DeBenedette MA, Wen T, Bachmann MF, Ohashi PS, Barber BH, Stocking KL, Peschon JJ, Watts TH (1999) Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol 163:4833–4841

    PubMed  CAS  Google Scholar 

  16. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  PubMed  CAS  Google Scholar 

  17. Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ, Ferrara JL, Bierer BE, Croop JM (1998) Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 91:222–230

    PubMed  CAS  Google Scholar 

  18. Estey EH (2002) Treatment of acute myelogenous leukemia. Oncology (Huntingt) 16:343–352

    Google Scholar 

  19. Foley EJ (1953) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 13:835–837

    PubMed  CAS  Google Scholar 

  20. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    Article  PubMed  CAS  Google Scholar 

  21. Freeman GJ, Freedman AS, Segil JM, Lee G, Whitman JF, Nadler LM (1989) B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J Immunol 143:2714–2722

    PubMed  CAS  Google Scholar 

  22. Freeman GJ, Boussiotis VA, Anumanthan A, Bernstein GM, Ke XY, Rennert PD, Gray GS, Gribben JG, Nadler LM (1995) B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity 2:523–532

    Article  PubMed  CAS  Google Scholar 

  23. Galea-Lauri J (2002) Immunological weapons against acute myeloid leukaemia. Immunology 107:20–27

    Article  PubMed  CAS  Google Scholar 

  24. Gommerman JL, Berger SA (1998) Protection from apoptosis by steel factor but not interleukin-3 is reversed through blockade of calcium influx. Blood 91:1891–1900

    PubMed  CAS  Google Scholar 

  25. Gommerman JL, Sittaro D, Klebasz NZ, Williams DA, Berger SA (2000) Differential stimulation of c-kit mutants by membrane-bound and soluble steel factor correlates with leukemic potential. Blood 96:3734–3742

    PubMed  CAS  Google Scholar 

  26. Goodwin RG, Din WS, Davis-Smith T, Anderson DM, Gimpel SD, Sato TA, Maliszewski CR, Brannan CI, Copeland NG, Jenkins NA, Farrah T, Armitage RJ, Fanslow WC, Smith CA (1993) Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol 23:2631–2641

    Article  PubMed  CAS  Google Scholar 

  27. Greenberger JS, Sakakeeny MA, Humphries RK, Eaves CJ, Eckner RJ (1983) Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines. Proc Natl Acad Sci USA 80:2931–2935

    Article  PubMed  CAS  Google Scholar 

  28. Greene JL, Leytze GM, Emswiler J, Peach R, Bajorath J, Cosand W, Linsley PS (1996) Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem 271:26762–26771

    Article  PubMed  CAS  Google Scholar 

  29. Guinn BA, DeBenedette MA, Watts TH, Berinstein NL (1999) 4-1BBL cooperates with B7-1 and B7-2 in converting a B cell lymphoma cell line into a long-lasting antitumor vaccine. J Immunol 162:5003–5010

    PubMed  CAS  Google Scholar 

  30. Guinn BA, Evely RS, Walsh V, Gilkes AF, Burnett AK, Mills KI (2000) An in vivo and in vitro comparison of the effects of b2-a2 and b3-a2 p210BCR-ABL splice variants on murine 32D cells. Leuk Lymphoma 37:393–404

    PubMed  CAS  Google Scholar 

  31. Guinn BA, Bertram EM, DeBenedette MA, Berinstein NL, Watts TH (2001) 4-1BBL enhances anti-tumor responses in the presence or absence of CD28 but CD28 is required for protective immunity against parental tumors. Cell Immunol 210:56–65

    Article  PubMed  CAS  Google Scholar 

  32. Hirokawa M, Kuroki J, Kitabayashi A, Miura AB (1996) Transmembrane signaling through CD80 (B7-1) induces growth arrest and cell spreading of human B lymphocytes accompanied by protein tyrosine phosphorylation. Immunol Lett 50:95–98

    Article  PubMed  CAS  Google Scholar 

  33. Hu Q, Trevisan M, Xu Y, Dong W, Berger SA, Lyman SD, Minden MD (1995) c-KIT expression enhances the leukemogenic potential of 32D cells. J Clin Invest 95:2530–2538

    Article  PubMed  CAS  Google Scholar 

  34. Hurtado JC, Kim SH, Pollok KE, Lee ZH, Kwon BS (1995) Potential role of 4-1BB in T cell activation. Comparison with the costimulatory molecule CD28. J Immunol 155:3360–3367

    PubMed  CAS  Google Scholar 

  35. Jeannin P, Delneste Y, Lecoanet-Henchoz S, Gauchat JF, Ellis J, Bonnefoy JY (1997) CD86 (B7-2) on human B cells. A functional role in proliferation and selective differentiation into IgE- and IgG4-producing cells. J Biol Chem 272:15613–15619

    Article  PubMed  CAS  Google Scholar 

  36. Kim KJ, Kanellopoulos-Langevin C, Merwin RM, Sachs DH, Asofsky R (1979) Establishment and characterization of BALB/c lymphoma cell lines with B cell properties. J Immunol 122:549

    PubMed  CAS  Google Scholar 

  37. Kim J, Ogata Y, Feldman RA (2003) Fes tyrosine kinase promotes survival and terminal granulocyte differentiation of factor-dependent myeloid progenitors (32D) and activates lineage-specific transcription factors. J Biol Chem 278:14978–14984

    Article  PubMed  CAS  Google Scholar 

  38. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH (1995) B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80:707–718

    Article  PubMed  CAS  Google Scholar 

  39. Kwon BS, Kestler DP, Eshhar Z, Oh KO, Wakulchik M (1989) Expression characteristics of two potential T cell mediator genes. Cell Immunol 121:414–422

    Article  PubMed  CAS  Google Scholar 

  40. Laderach D, Movassagh M, Johnson A, Mittler RS, Galy A (2002) 4-1BB co-stimulation enhances human CD8(+) T cell priming by augmenting the proliferation and survival of effector CD8(+) T cells. Int Immunol 14:1155–1167

    Article  PubMed  CAS  Google Scholar 

  41. Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS (2002) 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 169:4882–4888

    PubMed  Google Scholar 

  42. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    Article  PubMed  CAS  Google Scholar 

  43. Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA (1991) Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med 173:721–730

    Article  PubMed  CAS  Google Scholar 

  44. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R (1994) Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1:793–801

    Article  PubMed  CAS  Google Scholar 

  45. Lowenberg B, Burnett AK (1999) Acute myeloid leukaemia in adults. In: Degos L, Linch DC, Lowenberg B (eds) Textbook of malignant haematology. Martin Dunitz Ltd, London, pp 743–769

    Google Scholar 

  46. Marcucci G, Mrozek K, Bloomfield C (2005) Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Curr Opin Hematol 12:68–75

    Article  PubMed  CAS  Google Scholar 

  47. Matulonis U, Dosiou C, Freeman G, Lamont C, Mauch P, Nadler LM, Griffin JD (1996) B7-1 is superior to B7-2 costimulation in the induction and maintenance of T-cell mediated antileukemia immunity: further evidence that B7-1 and B7-2 are functionally distinct. J Immunol 156:1126–1131

    PubMed  CAS  Google Scholar 

  48. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, Mittler RS, Chen L (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682–685

    Article  PubMed  CAS  Google Scholar 

  49. Melero I, Bach N, Hellstrom KE, Aruffo A, Mittler RS, Chen L (1998) Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur J Immunol 28:1116–1121

    Article  PubMed  CAS  Google Scholar 

  50. Minami Y, Yamamoto K, Kiyoi H, Ueda R, Saito H, Naoe T (2003) Different antiapoptotic pathways between wild-type and mutated FLT3: insights into therapeutic targets in leukemia. Blood 102:2969–2975

    Article  PubMed  CAS  Google Scholar 

  51. Pollok KE, Kim YJ, Zhou Z, Hurtado J, Kim KK, Pickard RT, Kwon BS (1993) Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol 150:771–781

    PubMed  CAS  Google Scholar 

  52. Pollok KE, Kim YJ, Hurtado J, Zhou Z, Kim KK, Kwon BS (1994) 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells. Eur J Immunol 24:367–374

    Article  PubMed  CAS  Google Scholar 

  53. Shahinian A, Pfeffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A, Kawai K, Ohashi PS, Thompson CB, Mak TW (1993) Differential T cell costimulatory requirements in CD28-deficient mice. Science 261:609–612

    Article  PubMed  CAS  Google Scholar 

  54. Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, Brown TJ, Emswiler J, Raecho H, Larsen CP, Pearson TC, Ledbetter JA, Aruffo A, Mittler RS (1997) 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47–55

    Article  PubMed  CAS  Google Scholar 

  55. Suvas S, Singh V, Sahdev S, Vohra H, Agrewala JN (2002) Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem 277:7766–7775

    Article  PubMed  CAS  Google Scholar 

  56. Thompson CB, Lindsten T, Ledbetter JA, Kunkel SL, Young HA, Emerson SG, Leiden JM, June CH (1989) CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci USA 86:1333–1337

    Article  PubMed  CAS  Google Scholar 

  57. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    Article  PubMed  CAS  Google Scholar 

  58. Vinay DS, Kwon BS (1998) Role of 4-1BB in immune responses. Semin Immunol 10:481–489

    Article  PubMed  CAS  Google Scholar 

  59. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1:405–413

    Article  PubMed  CAS  Google Scholar 

  60. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Article  PubMed  CAS  Google Scholar 

  61. Watts TH, DeBenedette MA (1999) T cell co-stimulatory molecules other than CD28. Curr Opin Immunol 11:286–293

    Article  PubMed  CAS  Google Scholar 

  62. Weinberg AD, Evans DE, Thalhofer C, Shi T, Prell RA (2004) The generation of T cell memory: a review describing the molecular and cellular events following OX40 (CD134) engagement. J Leukoc Biol 75:962–972

    Article  PubMed  CAS  Google Scholar 

  63. Yam PY, Li S, Wu J, Hu J, Zsis JA, Yee JK (2002) Design of HIV vectors for efficient gene delivery into human hematopoietic cells. Mol Ther 5:479–484

    Article  PubMed  CAS  Google Scholar 

  64. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185

    Article  PubMed  CAS  Google Scholar 

  65. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Lucas Chan and Barbara-ann Guinn are funded by Leukaemia Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara-ann Guinn.

Additional information

This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2004 (PIVAC 4)”, held in Freudenstadt-Lauterbad, Black Forest, Germany, on 22–25 September 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheuk, A.T.C., Chan, L., Czepulkowski, B. et al. Development of a whole cell vaccine for acute myeloid leukaemia. Cancer Immunol Immunother 55, 68–75 (2006). https://doi.org/10.1007/s00262-005-0674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0674-5

Keywords

Navigation