Skip to main content
Log in

Immunotherapy with bovine aortic endothelial cells in subcutaneous and intracerebral glioma models in rats: effects on survival time, tumor growth, and tumor neovascularization

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

High-grade gliomas are aggressive tumors of the central nervous system characterized by endothelial cell proliferation and a high degree of vascularity. Conventional antitumoral treatments (i.e., surgery, radiotherapy, and chemotherapy) do not achieve satisfactory results (median survival in glioblastoma 12–18 months). It has been suggested that immunotherapy with xenogenic endothelial cells could slow tumor growth rate in a number of tumors in a murine model, but the study did not include gliomas. In experiments performed in our laboratory, vaccination with proliferating bovine aortic endothelium increased survival time in Fischer rats inoculated intracerebrally with 9L. Immunotherapy was also able to reduce the growth of subcutaneously injected 9L gliosarcoma cells in Fischer rats and to decrease microvessel density within the tumors, in the absence of major organ toxicity. Immunoglobulins (Ig) in the sera from vaccinated rats stained bovine aortic endothelium as well as human umbilical vein endothelium in active proliferation. Moreover, immune sera from immunized rats stained microvessels of human malignant glioma specimens and vessels of intracerebrally implanted tumors. Two proteins of MW of 11 and 19 kDa were identified by Western blot as targets of Ig elicited by vaccination. A possible future development is to select peptides/proteins suitable for vaccination in humans, avoiding the biohazards connected with xenogenic whole-cell vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a,b
Fig. 5a,b
Fig. 6a,b
Fig. 7a,b
Fig. 8

Similar content being viewed by others

References

  1. Legler JM, Ries LA, Smith MA, Warren JL, Heineman EF, Kaplan RS, Linet MS (1999) Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 91(16):1382

    Article  CAS  PubMed  Google Scholar 

  2. Mocellin S, Rossi CR, Lise M, Marincola FM (2002) Adjuvant immunotherapy for solid tumors: from promise to clinical application. Cancer Immunol Immunother 51(11–12):583

    Google Scholar 

  3. Scappaticci FA (2002) Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 20(18):3906

    Article  CAS  PubMed  Google Scholar 

  4. Pardoll DM (1998) Cancer vaccines. Nat Med 4[Suppl 5]:525

    CAS  PubMed  Google Scholar 

  5. Hishii M, Nitta T, Ishida H, Ebato M, Kurosu A, Yagita H, Sato K, Okumura K (1995) Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37(6):1160

    CAS  PubMed  Google Scholar 

  6. Staveley-O’Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H (1998) Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci U S A 95(3):1178

    Article  CAS  PubMed  Google Scholar 

  7. Foss FM (2002) Immunologic mechanisms of antitumor activity. Semin Oncol 29(3)[Suppl 7]:5

    Article  CAS  Google Scholar 

  8. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3(11):999

    Article  CAS  PubMed  Google Scholar 

  9. Hagedorn M, Bikfalvi A (2000) Target molecules for anti-angiogenic therapy: from basic research to clinical trials. Crit Rev Oncol Hematol 34(2):89

    Article  CAS  PubMed  Google Scholar 

  10. Bello L, Lucini V, Giussani C, Carrabba G, Pluderi M, Scaglione F, Tomei G, Villani R, Black PM, Bikfalvi A, Carroll RS (2003) IS20I, a specific alphavbeta3 integrin inhibitor, reduces glioma growth in vivo. Neurosurgery 52(1):177

    PubMed  Google Scholar 

  11. Bello L, Lucini V, Carrabba G, Giussani C, Machluf M, Pluderi M, Nikas D, Zhang J, Tomei G, Villani RM, Carroll RS, Bikfalvi A, Black PM (2001) Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res 61(24):8730

    CAS  PubMed  Google Scholar 

  12. Alessandri G, Chirivi RG, Fiorentini S, Dossi R, Bonardelli S, Giulini SM, Zanetta G, Landoni F, Graziotti PP, Turano A, Caruso A, Zardi L, Giavazzi R, Bani MR (1999) Phenotypic and functional characteristics of tumour-derived microvascular endothelial cells. Clin Exp Metastasis 17(8):655

    Article  CAS  PubMed  Google Scholar 

  13. Thorpe PE, Burrows FJ (1995) Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer Res Treat 36(2):237

    CAS  PubMed  Google Scholar 

  14. Wei YQ, Wang QR, Zhao X, Yang L, Tian L, Lu Y, Kang B, Lu CJ, Huang MJ, Lou YY, Xiao F, He QM, Shu JM, Xie XJ, Mao YQ, Lei S, Luo F, Zhou LQ, Liu CE, Zhou H, Jiang Y, Peng F, Yuan LP, Li Q, Wu Y, Liu JY (2000) Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med 6(10):1160

    Article  CAS  PubMed  Google Scholar 

  15. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52(11):2745

    CAS  PubMed  Google Scholar 

  16. Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol 177(3):275

    CAS  PubMed  Google Scholar 

  17. Lampson LA (2003) Brain tumor immunotherapy: an immunologist’s perspective. J Neurooncol 64:3

    Article  PubMed  Google Scholar 

  18. Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61(3):842

    CAS  PubMed  Google Scholar 

  19. Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T (2001) Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 50(7):337

    Article  CAS  PubMed  Google Scholar 

  20. Okada H, Lieberman FS, Edington HD, Witham TF, Wargo MJ, Cai Q, Elder EH, Whiteside TL, Schold SC Jr, Pollack IF (2003) Autologous glioma cell vaccine admix with interleukin-4 gene transfected fibroblasts in the treatment of recurrent glioblastoma: preliminary observations in a patients with a favorable response to therapy. J Neurooncol 64:13

    Article  PubMed  Google Scholar 

  21. Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77(2):362

    Article  CAS  PubMed  Google Scholar 

  22. Vaquero J, Zurita M, Morales C, Oya S, Coca S (2000) Prognostic significance of endothelial surface score and MIB-1 labeling index in glioblastoma. J Neurooncol 46(1):11

    Article  CAS  PubMed  Google Scholar 

  23. Stevens A, Kloter I, Roggendorf W (1988) Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer 61(4):738

    CAS  PubMed  Google Scholar 

  24. Streit WJ (1994) Cellular immune response in brain tumors. Neuropathol Appl Neurobiol 20(2):205

    CAS  PubMed  Google Scholar 

  25. Nag S (2003) Morphology and molecular properties of cellular component of normal cerebral vessels. Methods Mol Med 89:3

    Article  CAS  PubMed  Google Scholar 

  26. Yung WK, Albright RE, Olson J, Fredericks R, Fink K, Prados MD, Brada M, Spence A, Hohl RJ, Shapiro W, Glantz M, Greenberg H, Selker RG, Vick NA, Rampling R, Friedman H, Phillips P, Bruner J, Yue N, Osoba D, Zaknoen S, Levin VA (2000) A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 83(5):588

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Bianca Pollo for kindly providing sections of human glioblastomas, Dr Laura Cajola for helpful discussions about histochemical analysis, and Dr Luisa Bozzo for collaboration in Western blot analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salmaggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corsini, E., Gelati, M., Calatozzolo, C. et al. Immunotherapy with bovine aortic endothelial cells in subcutaneous and intracerebral glioma models in rats: effects on survival time, tumor growth, and tumor neovascularization. Cancer Immunol Immunother 53, 955–962 (2004). https://doi.org/10.1007/s00262-004-0529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0529-5

Keywords

Navigation