Skip to main content

Advertisement

Log in

Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Fibroblast activation protein (FAP) is a serine protease with dual enzymatic activities overexpressed in cancer-associated fibroblasts (CAFs) in several tumor types, while its expression in healthy adult tissues is scarce. FAP overexpression on CAFs is associated with poor prognosis and plays an important role in tumor development, progression, and invasion. Therefore, FAP is considered a robust therapeutic target for cancer therapy. Here, we try to review and highlight the recent advances in immunotherapies for FAP targeting including the anti-FAP antibodies and immunoconjugates, FAP chimeric antigen receptor (CAR)-T cell, and various FAP vaccines in a preclinical and clinical setting. Subsequently, a discussion on the challenges and prospects associated with the development and translation of effective and safe therapies for targeting and depletion of FAP is provided. We proposed that new CAR-T cell engineering strategies and nanotechnology-based systems as well as advanced functional biomaterials can be used to improve the efficiency and safety of CAR-T cells and vaccines against FAP for more personalized immunotherapy. This review emphasizes the immune targeting of FAP as an emerging stromal candidate and one of the crucial elements in immunotherapy and shows the potential for improvement of current cancer therapy.

Graphical Abstract

A summary of different immunotherapy approaches to target fibroblast activation protein (FAP) for cancer therapy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zi F, He J, He D, Li Y, Yang L, Cai Z. Fibroblast activation protein α in tumor microenvironment: recent progression and implications. Mol Med Rep. 2015;11(5):3203–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Busek P, Mateu R, Zubal M, Kotackova L, Sedo A. Targeting fibroblast activation protein in cancer–prospects and caveats. Front Biosci -Landmark. 2018;23(10):1933–68.

    CAS  Google Scholar 

  4. Puré E, Lo A. Can targeting stroma pave the way to enhanced antitumor immunity and immunotherapy of solid tumors? Cancer Immunol Res. 2016;4(4):269–78.

    PubMed  PubMed Central  Google Scholar 

  5. Wu Z, Hua Y, Shen Q, Yu C. Research progress on the role of fibroblast activation protein in diagnosis and treatment of cancer. Nucl Med Commun. 2022:10.1097.

  6. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115.

    CAS  PubMed  Google Scholar 

  7. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):1–15.

    Google Scholar 

  8. Bughda R, Dimou P, D’Souza RR, Klampatsa A. Fibroblast activation protein (FAP)-targeted CAR-T cells: Launching an attack on tumor stroma. ImmunoTargets Ther. 2021;10:313.

    PubMed  PubMed Central  Google Scholar 

  9. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dhakal B, Hari PN, Usmani SZ, Hamadani M. Chimeric antigen receptor T cell therapy in multiple myeloma: promise and challenges. Bone Marrow Transplant. 2021;56(1):9–19.

    PubMed  Google Scholar 

  11. Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ Jr, Guedan S. CAR-T cells hit the tumor microenvironment: strategies to overcome tumor escape. Front immunol. 2020;11:1109.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+ GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 2018;172(4):841–56. e16.

  13. Ping Q, Yan R, Cheng X, Wang W, Zhong Y, Hou Z, et al. Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther. 2021;28(9):984–99.

    CAS  PubMed  Google Scholar 

  14. Verdelli C, Avagliano L, Creo P, Guarnieri V, Scillitani A, Vicentini L, et al. Tumour-associated fibroblasts contribute to neoangiogenesis in human parathyroid neoplasia. Endocr Relat Cancer. 2015;22(1):87–98.

    CAS  PubMed  Google Scholar 

  15. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2019;16(5):282–95.

    PubMed  Google Scholar 

  16. Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett. 2015;361(2):155–63.

    PubMed  Google Scholar 

  17. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.

    CAS  PubMed  Google Scholar 

  18. Rice A, Cortes E, Lachowski D, Cheung B, Karim S, Morton J, et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis. 2017;6(7):e352-e.

  19. Bordeleau F, Mason BN, Lollis EM, Mazzola M, Zanotelli MR, Somasegar S, et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci. 2017;114(3):492–7.

    CAS  PubMed  Google Scholar 

  20. Erez N, Truitt M, Olson P, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell. 2010;17(2):135–47.

    CAS  PubMed  Google Scholar 

  21. Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells. 2020;9(1):217.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016;30(9):1002–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, et al. Cancer-associated fibroblasts: origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev. 2022:114504.

  24. De Wever O, Demetter P, Mareel M, Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer. 2008;123(10):2229–38.

    PubMed  Google Scholar 

  25. Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol. 2019;12(1):1–15.

    Google Scholar 

  26. Scanlan MJ, Raj B, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci. 1994;91(12):5657–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020;39(3):783–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamson EJ, Keane FM, Tholen S, Schilling O, Gorrell MD. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin Appl. 2014;8(5–6):454–63.

    CAS  PubMed  Google Scholar 

  29. Kelly T. Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist Updat: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy. 2005;8(1–2):51–8.

  30. Lo A, Wang L-CS, Scholler J, Monslow J, Avery D, Newick K, et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 2015;75(14):2800–10.

  31. Doucet A, Butler GS, Rodriáguez D, Prudova A, Overall CM. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol Cell Proteomics. 2008;7(10):1925–51.

    CAS  PubMed  Google Scholar 

  32. Kuzet S-E, Gaggioli C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res. 2016;365(3):607–19.

    CAS  PubMed  Google Scholar 

  33. Chen W-T, Kelly T. Seprase complexes in cellular invasiveness. Cancer Metastasis Rev. 2003;22(2):259–69.

    PubMed  Google Scholar 

  34. Liao Y, Xing S, Xu B, Liu W, Zhang G. Evaluation of the circulating level of fibroblast activation protein α for diagnosis of esophageal squamous cell carcinoma. Oncotarget. 2017;8(18):30050.

    PubMed  PubMed Central  Google Scholar 

  35. Xin L, Gao J, Zheng Z, Chen Y, Lv S, Zhao Z, et al. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front. Oncol. 2021:3187.

  36. O’Brien P, O’Connor BF. Seprase: an overview of an important matrix serine protease. Biochim Biophys Acta - Proteins Proteom. 2008;1784(9):1130–45.

    CAS  Google Scholar 

  37. Jia J, Martin TA, Ye L, Meng L, Xia N, Jiang WG, et al. Fibroblast activation protein-α promotes the growth and migration of lung cancer cells via the PI3K and sonic hedgehog pathways. Int J Mol Med. 2018;41(1):275–83.

    CAS  PubMed  Google Scholar 

  38. Jia J, Martin TA, Ye L, Jiang WG. FAP-α (fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway. BMC Cell Biol. 2014;15(1):1–14.

    Google Scholar 

  39. Lv B, Xie F, Zhao P, Ma X, Jiang WG, Yu J, et al. Promotion of cellular growth and motility is independent of enzymatic activity of fibroblast activation protein-α. Cancer Genom Proteom. 2016;13(3):201–8.

    CAS  Google Scholar 

  40. Zeng C, Wen M, Liu X. Fibroblast activation protein in osteosarcoma cells promotes angiogenesis via AKT and ERK signaling pathways. Oncol Lett. 2018;15(4):6029–35.

    PubMed  PubMed Central  Google Scholar 

  41. Ramirez-Montagut T, Blachere NE, Sviderskaya EV, Bennett DC, Rettig WJ, Garin-Chesa P, et al. FAPα, a surface peptidase expressed during wound healing, is a tumor suppressor. Oncogene. 2004;23(32):5435–46.

    CAS  PubMed  Google Scholar 

  42. Liu F, Qi L, Liu B, Liu J, Zhang H, Che D, et al. Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PLoS ONE. 2015;10(3): e0116683.

    PubMed  PubMed Central  Google Scholar 

  43. Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res. 2014;2(3):187–93.

    CAS  PubMed  Google Scholar 

  44. Wang XM, Yao T-W, Nadvi NA, Osborne B, McCaughan GW, Gorrell MD. Fibroblast activation protein and chronic liver disease. Front Biosci-Landmark. 2008;13(8):3168–80.

    CAS  Google Scholar 

  45. Bou-Gharios G, Abraham D, de Crombrugghe B. Type I collagen structure, synthesis, and regulation. Princ. Bone Biol: Elsevier; 2020. p. 295–337.

  46. Wu G, Quek AJ, Caradoc-Davies TT, Ekkel SM, Mazzitelli B, Whisstock JC, et al. Structural studies of plasmin inhibition. Biochem Soc Trans. 2019;47(2):541–57.

    CAS  PubMed  Google Scholar 

  47. Keane FM, Nadvi NA, Yao TW, Gorrell MD. Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-α. The FEBS J. 2011;278(8):1316–32.

    CAS  PubMed  Google Scholar 

  48. Reichmann F, Holzer P. Neuropeptide Y: a stressful review. Neuropeptides. 2016;55:99–109.

    CAS  PubMed  Google Scholar 

  49. Muñoz M, Coveñas R. Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids. 2014;46(7):1727–50.

    PubMed  Google Scholar 

  50. Klemann C, Wagner L, Stephan M, von Hörsten S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol. 2016;185(1):1–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang G-M, Xu W, Du J, Zhang K-S, Zhang Q-G, Wang X-W, et al. The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget. 2016;7(22):33472.

    PubMed  PubMed Central  Google Scholar 

  52. Teichgräber V, Monasterio C, Chaitanya K, Boger R, Gordon K, Dieterle T, et al. Specific inhibition of fibroblast activation protein (FAP)-alpha prevents tumor progression in vitro. Adv Med Sci. 2015;60(2):264–72.

    PubMed  Google Scholar 

  53. Kakarla S, Song X-T, Gottschalk S. Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy. 2012;4(11):1129–38.

    CAS  PubMed  Google Scholar 

  54. Koustoulidou S, Hoorens MW, Dalm SU, Mahajan S, Debets R, Seimbille Y, et al. Cancer-associated fibroblasts as players in cancer development and progression and their role in targeted radionuclide imaging and therapy. Cancers. 2021;13(5):1100.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Henry LR, Lee H-O, Lee JS, Klein-Szanto A, Watts P, Ross EA, et al. Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res. 2007;13(6):1736–41.

    CAS  PubMed  Google Scholar 

  56. Fang J, Xiao L, Joo K, Liu Y, Zhang C, Liu S, et al. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice. Int J Cancer. 2015;138(4):1013–23.

    PubMed  PubMed Central  Google Scholar 

  57. Tanswell P, Garin‐Chesa P, Rettig WJ, Welt S, Divgi CR, Casper ES, et al. Population pharmacokinetics of antifibroblast activation protein monoclonal antibody F19 in cancer patients. Br J Clin Pharmacol. 2001;51(2):177–80. 

  58. Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem. 2013;59(1):85–93.

    CAS  PubMed  Google Scholar 

  59. Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. Clin Oncol. 1994;12(6):1193–203.

    CAS  Google Scholar 

  60. Kloft C, Graefe E, Tanswell P, Scott A, Hofheinz R, Amelsberg A, et al. Population pharmacokinetics of sibrotuzumab, a novel therapeutic monoclonal antibody, in cancer patients. Invest New Drugs. 2004;22(1):39–52.

    CAS  PubMed  Google Scholar 

  61. Hofheinz R-D, Al-Batran S-E, Hartmann F, Hartung G, Jäger D, Renner C, et al. Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Oncol Res Treat. 2003;26(1):44–8.

    CAS  Google Scholar 

  62. Scott AM, Wiseman G, Welt S, Adjei A, Lee F-T, Hopkins W, et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res. 2003;9(5):1639–47.

    CAS  PubMed  Google Scholar 

  63. Fischer E, Chaitanya K, Wüest T, Wadle A, Scott AM, van den Broek M, et al. Radioimmunotherapy of fibroblast activation protein positive tumors by rapidly internalizing antibodies radioimmunotherapy by internalizing FAP-specific antibodies. Clin Cancer Res. 2012;18(22):6208–18.

    CAS  PubMed  Google Scholar 

  64. Schmidt A, Müller D, Mersmann M, Wüest T, Gerlach E, Garin-Chesa P, et al. Generation of human high-affinity antibodies specific for the fibroblast activation protein by guided selection. Eur J Biochem. 2001;268(6):1730–8.

    CAS  PubMed  Google Scholar 

  65. Hornig N, Kermer V, Frey K, Diebolder P, Kontermann RE, Müller D. Combination of a bispecific antibody and costimulatory antibody-ligand fusion proteins for targeted cancer immunotherapy. J Immunother. 2012;35(5):418–29.

    CAS  PubMed  Google Scholar 

  66. Wüest T, Moosmayer D, Pfizenmaier K. Construction of a bispecific single chain antibody for recruitment of cytotoxic T cells to the tumour stroma associated antigen fibroblast activation protein. J Biotechnol. 2001;92(2):159–68.

  67. Claus C, Ferrara C, Xu W, Sam J, Lang S, Uhlenbrock F, et al. Tumor-targeted 4–1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med. 2019;11(496).

  68. Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, et al. Fibroblast activation protein-targeted-4–1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. J Immunother Cancer. 2020;8(2).

  69. Ostermann E, Garin-Chesa P, Heider KH, Kalat M, Lamche H, Puri C, et al. Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin Cancer Res. 2008;14(14):4584–92.

  70. Burckhart T, Thiel M, Nishikawa H, Wüest T, Müller D, Zippelius A, et al. Tumor-specific crosslinking of GITR as costimulation for immunotherapy. J Immunother. 2010;33(9):925–34.

    CAS  PubMed  Google Scholar 

  71. Samel D, Müller D, Gerspach J, Assohou-Luty C, Sass G, Tiegs G, et al. Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted activation. J Biol Chem. 2003;278(34):32077–82.

    CAS  PubMed  Google Scholar 

  72. Waldhauer I, Gonzalez-Nicolini V, Freimoser-Grundschober A, Nayak TK, Fahrni L, Hosse RJ, et al., editors. Simlukafusp alfa (FAP-IL2v) immunocytokine is a versatile combination partner for cancer immunotherapy. MAbs; 2021: Taylor & Francis.

  73. Soerensen MM, Ros W, Rodriguez-Ruiz ME, Robbrecht D, Rohrberg KS, Martin-Liberal J, et al. Safety, PK/PD, and anti-tumor activity of RO6874281, an engineered variant of interleukin-2 (IL-2v) targeted to tumor-associated fibroblasts via binding to fibroblast activation protein (FAP). ASCO; 2018.

  74. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci. 1989;86(24):10024–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu B, Yan L, Zhou M. Target selection of CAR T cell therapy in accordance with the TME for solid tumors. Am J Cancer Res. 2019;9(2):228.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Badar T, Shah NN. Chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Curr Treat Options Oncol. 2020;21(2):1–11.

    Google Scholar 

  79. Ghobadi A. Chimeric antigen receptor T cell therapy for non-Hodgkin lymphoma. Curr Res Transl Med. 2018;66(2):43–9.

  80. Haslauer T, Greil R, Zaborsky N, Geisberger R. CAR T-Cell therapy in hematological malignancies. Int J Mol Sci. 2021;22(16).

  81. Schuberth PC, Hagedorn C, Jensen SM, Gulati P, van den Broek M, Mischo A, et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med. 2013;11(1):1–11.

    Google Scholar 

  82. Kakarla S, Chow KK, Mata M, Shaffer DR, Song X-T, Wu M-F, et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 2013;21(8):1611–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang L, Lo A, Scholler J, Sun J, Majumdar R, Kapoor V, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res. 2014;2(2):154–66.

    CAS  PubMed  Google Scholar 

  84. Tran E, Chinnasamy D, Yu Z, Morgan R, Lee C, Restifo N, et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013;210(6):1125–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gulati P, Rühl J, Kannan A, Pircher M, Schuberth P, Nytko K, et al. Aberrant Lck signal via CD28 costimulation augments antigen-specific functionality and tumor control by redirected T Cells with PD-1 blockade in humanized mice. Clin Cancer Res. 2018;24(16):3981–93.

    CAS  PubMed  Google Scholar 

  86. Miao L, Zhang J, Huang B, Zhang Z, Wang S, Tang F, et al. Special chimeric antigen receptor (CAR) modifications of T cells: a review. Front Oncol. 2022;12:832765-.

  87. Petrausch U, Schuberth PC, Hagedorn C, Soltermann A, Tomaszek S, Stahel R, et al. Re-directed T cells for the treatment of fibroblast activation protein (FAP)-positive malignant pleural mesothelioma (FAPME-1). BMC Cancer. 2012;12(1):1–7.

    Google Scholar 

  88. Pircher M, Schuberth P, Gulati P, Sulser S, Weder W, Curioni A, et al. FAP-specific re-directed T cells first in-man study in malignant pleural mesothelioma: experience of the first patient treated. J Immunother Cancer. 2015;3(Suppl 2):P120.

    PubMed Central  Google Scholar 

  89. Curioni A, Britschgi C, Hiltbrunner S, Bankel L, Gulati P, Weder W, et al. A phase I clinical trial of malignant pleural mesothelioma treated with locally delivered autologous anti-FAP-targeted CAR T-cells. Ann Oncol. 2019;30: v501.

    Google Scholar 

  90. Pang N, Shi J, Qin L, Chen A, Tang Y, Yang H, et al. IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin. J Hematol Oncol. 2021;14(1):118-.

  91. Wang E, Wang L, Tsai C, Bhoj V, Gershenson Z, Moon E, et al. Generation of potent T-cell immunotherapy for cancer using DAP12-based, multichain, chimeric immunoreceptors. Cancer Immunol Res. 2015;3(7):815–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jahani V, Yazdani M, Badiee A, Jaafari MR, Arabi L. Liposomal celecoxib combined with dendritic cell therapy enhances antitumor efficacy in melanoma. J Control Rel: Official J Control Rel Soc. S0168–3659 (23) 00043–3.

  93. Loeffler M, Krüger JA, Niethammer AG, Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Investig. 2006;116(7):1955–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Duperret EK, Trautz A, Ammons D, Perales-Puchalt A, Wise MC, Yan J, et al. Alteration of the tumor stroma using a consensus DNA vaccine targeting fibroblast activation protein (FAP) synergizes with antitumor vaccine therapy in MiceDNA vaccine for FAP alters immune stroma. Clin Cancer Res. 2018;24(5):1190–201.

    CAS  PubMed  Google Scholar 

  95. Salimifard S, Masjedi A, Hojjat-Farsangi M, Ghalamfarsa G, Irandoust M, Azizi G, et al. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol Res Pract. 2020;216(5):152915.

    CAS  PubMed  Google Scholar 

  96. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE. 2009;4(11): e7965.

    PubMed  PubMed Central  Google Scholar 

  97. Chen M, Xu G, Fan M, Jia H, Xiao L, Lang J. Anti-tumour effects of a xenogeneic fibroblast activation protein-based whole cell tumour vaccine in murine tumour models. Artif Cells Nanomed Biotechnol. 2019;47(1):4182–93.

  98. Wen Y, Wang CT, Ma TT, Li ZY, Zhou LN, Mu B, et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 2010;101(11):2325–32.

    CAS  PubMed  Google Scholar 

  99. Yi Y-M, Zhang G, Zeng J, Huang S-C, Li L-L, Fang R, et al. A new tumor vaccine: FAPτ-MT elicits effective antitumor response by targeting indolamine2, 3-dioxygenase in antigen presenting cells. Cancer Biol Ther. 2011;11(10):866–73.

    CAS  PubMed  Google Scholar 

  100. Jiang G-M, Xie W-Y, Wang H-S, Du J, Wu B-P, Xu W, et al. Curcumin combined with FAPαc vaccine elicits effective antitumor response by targeting indolamine-2, 3-dioxygenase and inhibiting EMT induced by TNF-α in melanoma. Oncotarget. 2015;6(28):25932.

    PubMed  PubMed Central  Google Scholar 

  101. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein–α. Science. 2010;330(6005):827–30.

    CAS  PubMed  Google Scholar 

  102. Xie J, Yuan S, Peng L, Li H, Niu L, Xu H, et al. Antitumor immunity targeting fibroblast activation protein-α in a mouse Lewis lung carcinoma model. Oncol Lett. 2020;20(1):868–76.

    PubMed  PubMed Central  Google Scholar 

  103. Fassnacht M, Lee J, Milazzo C, Boczkowski D, Su Z, Nair S, et al. Induction of CD4+ and CD8+ T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy. Clin Cancer Res. 2005;11(15):5566–71.

    CAS  PubMed  Google Scholar 

  104. Gottschalk S, Yu F, Ji M, Kakarla S, Song X-T. A vaccine that co-targets tumor cells and cancer associated fibroblasts results in enhanced antitumor activity by inducing antigen spreading. PLoS ONE. 2013;8(12): e82658.

    PubMed  PubMed Central  Google Scholar 

  105. Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E. Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res. 2005;65(23):11156–63.

    CAS  PubMed  Google Scholar 

  106. Qian L, Tang Z, Yin S, Mo F, Yang X, Hou X, et al. Fusion of dendritic cells and cancer-associated fibroblasts for activation of anti-tumor cytotoxic T lymphocytes. J Biomed Nanotech. 2018;14(10):1826–35.

    Google Scholar 

  107. Zhang F-F, Qiao Y, Xie Y, Liu C, Wu H, Wu J-X, et al. Epitope-based minigene vaccine targeting fibroblast activation protein α induces specific immune responses and anti-tumor effects in 4 T1 murine breast cancer model. Int Immunopharmacol. 2022;112: 109237.

    CAS  PubMed  Google Scholar 

  108. Vickman RE, Faget DV, Beachy P, Beebe D, Bhowmick NA, Cukierman E, et al. Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget. 2020;11(40):3621.

    PubMed  PubMed Central  Google Scholar 

  109. Waise S, Parker R, Rose-Zerilli MJ, Layfield DM, Wood O, West J, et al. An optimised tissue disaggregation and data processing pipeline for characterising fibroblast phenotypes using single-cell RNA sequencing. Sci Rep. 2019;9(1):1–10.

    CAS  Google Scholar 

  110. Glabman RA, Choyke PL, Sato N. Cancer-associated fibroblasts: tumorigenicity and targeting for cancer therapy. Cancers. 2022;14(16):3906.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li X, Wang Y, Zhao Y, Yang H, Tong A, Zhao C, et al. Immunotherapy of tumor with vaccine based on basic fibroblast growth factor-activated fibroblasts. J Cancer Res Clin Oncol. 2014;140:271–80.

    CAS  PubMed  Google Scholar 

  112. Sterner R, Sterner R. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69-.

  113. Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee C-CR, Restifo NP, et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013;210(6):1125–35.

  114. Andrea A, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T cell genetic engineering strategies to overcome hurdles in solid tumors treatment. Front Immunol. 2022;13:830292-.

  115. Lin H, Cheng J, Mu W, Zhou J, Zhu L. Advances in universal CAR-T cell therapy. Front Immunol. 2021;12.

  116. Choe J, Watchmaker P, Simic M, Gilbert R, Li A, Krasnow N, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13(591).

  117. Ho JQ, Arabi L, Basu M, Khaled F, Gonzalez Y, Ghegeliu D, et al. Nanotechnology and nanomedicine. Nanomedicine for ischemic cardiomyopathy: Elsevier; 2020. p. 9–21.

    Google Scholar 

  118. Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater. 2019;4(6):398–414.

    Google Scholar 

  119. Chao Y, Liu Z. Biomaterials tools to modulate the tumour microenvironment in immunotherapy. Nat Rev Bioeng. 2023:1–14.

  120. Zanganeh S, Georgala P, Corbo C, Arabi L, Ho J, Javdani N, et al. Immunoengineering in glioblastoma imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(6):e1575-e.

Download references

Acknowledgements

Graphical abstract, Fig. 1, and panels B and C in Fig. 2 were drawn with Biorender software. The authors would like to acknowledge the Nanotechnology Research Center, Mashhad University of Medical Sciences (MUMS).

Author information

Authors and Affiliations

Authors

Contributions

Leila Arabi had the idea for the article; Sedigheh Shahvali, Niloufar Rahiman, and Leila Arabi performed the literature search and data analysis; and Leila Arabi and Mamhmoud Reza Jaafari critically revised the work.

Corresponding author

Correspondence to Leila Arabi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have approved the content of the manuscript prior to its submission for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahvali, S., Rahiman, N., Jaafari, M.R. et al. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv. and Transl. Res. 13, 2041–2056 (2023). https://doi.org/10.1007/s13346-023-01308-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01308-9

Keywords

Navigation