Skip to main content
Log in

New frontiers in imaging including radiomics updates for pancreatic neuroendocrine neoplasms

  • Special Section: Quantitative Imaging
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Objective

To illustrate the applications of various imaging tools including conventional MDCT, MRI including DWI, CT & MRI radiomics, FDG & DOTATATE PET-CT for diagnosis, staging, grading, prognostication, treatment planning and assessing treatment response in cases of pancreatic neuroendocrine neoplasms (PNENs).

Background

Gastroenteropancreatic neuroendocrine neoplasms (GEP NENs) are very diverse clinically & biologically. Their treatment and prognosis depend on staging and primary site, as well as histological grading, the importance of which is also reflected in the recently updated WHO classification of GEP NENs. Grade 3 poorly differentiated neuroendocrine carcinomas (NECs) are aggressive & nearly always advanced at diagnosis with poor prognosis; whereas Grades-1 and 2 well-differentiated neuroendocrine tumors (NETs) can be quite indolent. Grade 3 well-differentiated NETs represent a new category of neoplasm with an intermediate prognosis. Importantly, the evidence suggest grade heterogeneity can occur within a given tumor and even grade progression can occur over time. Emerging evidence suggests that several non-invasive qualitative and quantitative imaging features on CT, dual-energy CT (DECT), MRI, PET and somatostatin receptor imaging with new tracers, as well as texture analysis, may be useful to grade, prognosticate, and accurately stage primary NENs. Imaging features may also help to inform choice of treatment and follow these neoplasms post-treatment.

Conclusion

GEP NENs treatment and prognosis depend on the stage as well as histological grade of the tumor. Traditional ways of imaging evaluation for diagnosis and staging does not yet yield sufficient information to replace operative and histological evaluation. Recognition of important qualitative imaging features together with quantitative features and advanced imaging tools including functional imaging with DWI MRI, DOTATATE PET/CT, texture analysis with radiomics and radiogenomic features appear promising for more accurate staging, tumor risk stratification, guiding management and assessing treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hoyer D. Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O'Carroll AM, Patel YC, Schonbrunn A, Taylor JE, Reisine T. Classification and nomenclature of somatostatin receptors Trends Pharmacol Sci. 1995;16:86-8.

    CAS  PubMed  Google Scholar 

  2. Oberg KE. Gastrointestinal neuroendocrine tumors. Ann Oncol. 2010;21 Suppl 7:vii72–80.

  3. Wang R, Zheng-Pywell R, Chen HA, Bibb JA, Chen H, Rose JB. Management of Gastrointestinal Neuroendocrine Tumors. Clin Med Insights Endocrinol Diabetes. 2019;12:1179551419884058.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cloyd JM, Poultsides GA. Non-functional neuroendocrine tumors of the pancreas: Advances in diagnosis and management. World journal of gastroenterology: WJG. 2015;21(32):9512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. Journal of clinical oncology. 2008;26(18):3063-72.

    Article  PubMed  Google Scholar 

  6. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017;3(10):1335-42.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ito T, Igarashi H, Nakamura K, Sasano H, Okusaka T, Takano K, et al. Epidemiological trends of pancreatic and gastrointestinal neuroendocrine tumors in Japan: a nationwide survey analysis. Journal of gastroenterology. 2015;50(1):58-64.

    Article  PubMed  Google Scholar 

  8. Fraenkel M, Kim M, Faggiano A, De Herder W, Valk G. Incidence of gastroenteropancreatic neuroendocrine tumours: a systematic review of the literature. Endocrine-related cancer. 2014;21(3):R153-R63.

    Article  CAS  PubMed  Google Scholar 

  9. Sundin A, Arnold R, Baudin E, Cwikla JB, Eriksson B, Fanti S, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine and hybrid imaging. Neuroendocrinology. 2017;105(3):212-44.

    Article  CAS  PubMed  Google Scholar 

  10. Strosberg JR, Cheema A, Weber JM, Ghayouri M, Han G, Hodul PJ, et al. Relapse-free survival in patients with nonmetastatic, surgically resected pancreatic neuroendocrine tumors: an analysis of the AJCC and ENETS staging classifications. Ann Surg. 2012;256(2):321-5.

    Article  PubMed  Google Scholar 

  11. Rodallec M, Vilgrain V, Couvelard A, Rufat P, O’Toole D, Barrau V, et al. Endocrine pancreatic tumours and helical CT: contrast enhancement is correlated with microvascular density, histoprognostic factors and survival. Pancreatology. 2006;6(1-2):77-85.

    Article  CAS  PubMed  Google Scholar 

  12. Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system: World Health Organization; 2010.

  13. Liang W, Yang P, Huang R, Xu L, Wang J, Liu W, et al. A combined nomogram model to preoperatively predict histologic grade in pancreatic neuroendocrine tumors. Clinical Cancer Research. 2019;25(2):584-94.

    Article  PubMed  Google Scholar 

  14. Marion-Audibert A-M, Barel C, Gouysse G, Dumortier J, Pilleul F, Pourreyron C, et al. Low microvessel density is an unfavorable histoprognostic factor in pancreatic endocrine tumors. Gastroenterology. 2003;125(4):1094-104.

    Article  PubMed  Google Scholar 

  15. Kim JY, Hong SM. Recent Updates on Neuroendocrine Tumors From the Gastrointestinal and Pancreatobiliary Tracts. Arch Pathol Lab Med. 2016;140(5):437-48.

    Article  CAS  PubMed  Google Scholar 

  16. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020;76(2):182-8.

    Article  PubMed  Google Scholar 

  17. Coriat R, Walter T, Terris B, Couvelard A, Ruszniewski P. Gastroenteropancreatic Well-Differentiated Grade 3 Neuroendocrine Tumors: Review and Position Statement. Oncologist. 2016;21(10):1191-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heetfeld M, Chougnet CN, Olsen IH, Rinke A, Borbath I, Crespo G, et al. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2015;22(4):657-64.

    Article  CAS  PubMed  Google Scholar 

  19. Marinoni I, Kurrer AS, Vassella E, Dettmer M, Rudolph T, Banz V, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology. 2014;146(2):453–60 e5.

  20. Kim JY, Brosnan-Cashman JA, An S, Kim SJ, Song KB, Kim MS, et al. Alternative Lengthening of Telomeres in Primary Pancreatic Neuroendocrine Tumors Is Associated with Aggressive Clinical Behavior and Poor Survival. Clin Cancer Res. 2017;23(6):1598-606.

    Article  CAS  PubMed  Google Scholar 

  21. Yang Z, Tang LH, Klimstra DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. The American journal of surgical pathology. 2011;35(6):853-60.

    Article  PubMed  Google Scholar 

  22. Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia. 2017;19(12):991-1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim DW, Kim HJ, Kim KW, Byun JH, Song KB, Kim JH, et al. Neuroendocrine neoplasms of the pancreas at dynamic enhanced CT: comparison between grade 3 neuroendocrine carcinoma and grade 1/2 neuroendocrine tumour. European radiology. 2015;25(5):1375-83.

    Article  PubMed  Google Scholar 

  24. Pereira JAS, Rosado E, Bali M, Metens T, Chao S-L. Pancreatic neuroendocrine tumors: correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade. Abdominal imaging. 2015;40(8):3122-8.

    Article  PubMed  Google Scholar 

  25. Kim JH, Eun HW, Kim YJ, Lee JM, Han JK, Choi B-I. Pancreatic neuroendocrine tumour (PNET): Staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT findings from pancreatic adenocarcinoma. European radiology. 2016;26(5):1338-47.

    Article  PubMed  Google Scholar 

  26. Toshima F, Inoue D, Komori T, Yoshida K, Yoneda N, Minami T, et al. Is the combination of MR and CT findings useful in determining the tumor grade of pancreatic neuroendocrine tumors? Japanese journal of radiology. 2017;35(5):242-53.

    Article  CAS  PubMed  Google Scholar 

  27. Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT. Cancer imaging. 2013;13(1):140.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights into imaging. 2012;3(6):573-89.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Choi TW, Kim JH, Yu MH, Park SJ, Han JK. Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and computerized texture analysis. Acta Radiologica. 2018;59(4):383-92.

    Article  CAS  PubMed  Google Scholar 

  30. Canellas R, Burk KS, Parakh A, Sahani DV. Prediction of pancreatic neuroendocrine tumor grade based on CT features and texture analysis. American Journal of Roentgenology. 2018;210(2):341-6.

    Article  PubMed  Google Scholar 

  31. Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics. 2017;37(5):1483-503.

    Article  PubMed  Google Scholar 

  32. Fidler J, Fletcher JG, Reading C, Andrews J, Thompson G, Grant C, et al. Preoperative detection of pancreatic insulinomas on multiphasic helical CT. American Journal of Roentgenology. 2003;181(3):775-80.

    Article  CAS  PubMed  Google Scholar 

  33. Kawamoto S, Shi C, Hruban RH, Choti MA, Schulick RD, Fishman EK, et al. Small serotonin-producing neuroendocrine tumor of the pancreas associated with pancreatic duct obstruction. American Journal of Roentgenology. 2011;197(3):W482-W8.

    Article  PubMed  Google Scholar 

  34. Chetty R, El-Shinnawy I. Intraductal pancreatic neuroendocrine tumor. Endocrine pathology. 2009;20(4):262.

    CAS  PubMed  Google Scholar 

  35. De Robertis R, Paiella S, Cardobi N, Landoni L, Tinazzi Martini P, Ortolani S, et al. Tumor thrombosis: a peculiar finding associated with pancreatic neuroendocrine neoplasms. A pictorial essay. Abdom Radiol (NY). 2018;43(3):613-9.

    Article  Google Scholar 

  36. Semelka RC, Custodio CM, Balci NC, Woosley JT. Neuroendocrine tumors of the pancreas: spectrum of appearances on MRI. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2000;11(2):141-8.

    Article  CAS  Google Scholar 

  37. Guo C, Zhuge X, Wang Q, Xiao W, Wang Z, Wang Z, et al. The differentiation of pancreatic neuroendocrine carcinoma from pancreatic ductal adenocarcinoma: the values of CT imaging features and texture analysis. Cancer Imaging. 2018;18(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Guo C, Chen X, Xiao W, Wang Q, Sun K, Wang Z. Pancreatic neuroendocrine neoplasms at magnetic resonance imaging: comparison between grade 3 and grade 1/2 tumors. OncoTargets and therapy. 2017;10:1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He M, Liu Z, Lin Y, Wan J, Li J, Xu K, et al. Differentiation of Atypical Non-Functional Pancreatic Neuroendocrine Tumor and Pancreatic Ductal Adenocarcinoma using CT based Radiomics. European Journal of Radiology. 2019.

  40. Li J, Lu J, Liang P, Li A, Hu Y, Shen Y, et al. Differentiation of atypical pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas: Using whole‐tumor CT texture analysis as quantitative biomarkers. Cancer medicine. 2018;7(10):4924-31.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohara Y, Oda T, Hashimoto S, Akashi Y, Miyamoto R, Enomoto T, et al. Pancreatic neuroendocrine tumor and solid-pseudopapillary neoplasm: Key immunohistochemical profiles for differential diagnosis. World journal of gastroenterology. 2016;22(38):8596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li X, Zhu H, Qian X, Chen N, Lin X. MRI Texture Analysis for Differentiating Nonfunctional Pancreatic Neuroendocrine Neoplasms From Solid Pseudopapillary Neoplasms of the Pancreas. Academic radiology. 2019.

  43. Shindo T, Fukukura Y, Umanodan T, Takumi K, Hakamada H, Nakajo M, et al. Histogram analysis of apparent diffusion coefficient in differentiating pancreatic adenocarcinoma and neuroendocrine tumor. Medicine. 2016;95(4).

  44. Gu D, Hu Y, Ding H, Wei J, Chen K, Liu H, et al. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. European radiology. 2019:1–11.

  45. Kulali F, Semiz-Oysu A, Demir M, Segmen-Yilmaz M, Bukte Y. Role of diffusion-weighted MR imaging in predicting the grade of nonfunctional pancreatic neuroendocrine tumors. Diagnostic and interventional imaging. 2018;99(5):301-9.

    Article  CAS  PubMed  Google Scholar 

  46. Belousova E, Karmazanovsky G, Kriger A, Kalinin D, Mannelli L, Glotov A, et al. Contrast-enhanced MDCT in patients with pancreatic neuroendocrine tumours: correlation with histological findings and diagnostic performance in differentiation between tumour grades. Clinical radiology. 2017;72(2):150-8.

    Article  CAS  PubMed  Google Scholar 

  47. Basu B, Basu S. Correlating and combining genomic and proteomic assessment with in vivo molecular functional imaging: Will this be the future roadmap for personalized cancer management? : Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2016.

  48. Guo C-g, Ren S, Chen X, Wang Q-d, Xiao W-b, Zhang J-f, et al. Pancreatic neuroendocrine tumor: prediction of the tumor grade using magnetic resonance imaging findings and texture analysis with 3-T magnetic resonance. Cancer management and research. 2019;11:1933.

  49. Lotfalizadeh E, Ronot M, Wagner M, Cros J, Couvelard A, Vullierme M-P, et al. Prediction of pancreatic neuroendocrine tumour grade with MR imaging features: added value of diffusion-weighted imaging. European radiology. 2017;27(4):1748-59.

    Article  PubMed  Google Scholar 

  50. De Robertis R, Maris B, Cardobi N, Martini PT, Gobbo S, Capelli P, et al. Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors? European radiology. 2018;28(6):2582-91.

    Article  PubMed  Google Scholar 

  51. Zhang P, Yu J, Li J, Shen L, Li N, Zhu H, et al. Clinical and Prognostic Value of PET/CT Imaging with Combination of 68Ga-DOTATATE and 18F-FDG in Gastroenteropancreatic Neuroendocrine Neoplasms. Contrast media & molecular imaging. 2018;2018.

  52. Guo C, Zhuge X, Wang Z, Wang Q, Sun K, Feng Z, et al. Textural analysis on contrast-enhanced CT in pancreatic neuroendocrine neoplasms: association with WHO grade. Abdominal Radiology. 2019;44(2):576-85.

    Article  PubMed  Google Scholar 

  53. Strosberg J, Nasir A, Coppola D, Wick M, Kvols L. Correlation between grade and prognosis in metastatic gastroenteropancreatic neuroendocrine tumors. Human pathology. 2009;40(9):1262-8.

    Article  PubMed  Google Scholar 

  54. McGovern JM, Singhi AD, Borhani AA, Furlan A, McGrath KM, Zeh HJ, 3rd, et al. CT Radiogenomic Characterization of the Alternative Lengthening of Telomeres Phenotype in Pancreatic Neuroendocrine Tumors. AJR Am J Roentgenol. 2018;211(5):1020-5.

    Article  PubMed  Google Scholar 

  55. Dromain C, Sundin A, Najran P, Trueba HV, Burgio MD, Crona J, et al. Tumour Growth Rate to predict the outcome of patients with Neuroendocrine Tumours: Performance and sources of variability. Neuroendocrinology. 2020.

  56. Sharma R, Wang WM, Yusuf S, Evans J, Ramaswami R, Wernig F, et al. 68Ga-DOTATATE PET/CT parameters predict response to peptide receptor radionuclide therapy in neuroendocrine tumours. Radiotherapy and Oncology. 2019.

  57. Bodei L, Kidd M, Modlin I, Prasad V, Severi S, Ambrosini V, et al. Gene transcript analysis blood values correlate with 68 Ga-DOTA-somatostatin analog (SSA) PET/CT imaging in neuroendocrine tumors and can define disease status. European journal of nuclear medicine and molecular imaging. 2015;42(9):1341-52.

    Article  CAS  PubMed  Google Scholar 

  58. d’Assignies G, Fina P, Bruno O, Vullierme M-P, Tubach F, Paradis V, et al. High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology. 2013;268(2):390-9.

    Article  PubMed  Google Scholar 

  59. Ronot M, Cuccioli F, Burgio MD, Vullierme M-P, Hentic O, Ruszniewski P, et al. Neuroendocrine liver metastases: vascular patterns on triple-phase MDCT are indicative of primary tumour location. European journal of radiology. 2017;89:156-62.

    Article  PubMed  Google Scholar 

  60. Kaltenbach B, Wichmann JL, Pfeifer S, Albrecht MH, Booz C, Lenga L, et al. Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT. European journal of radiology. 2018;105:20-4.

    Article  PubMed  Google Scholar 

  61. Giesel FL, Schneider F, Kratochwil C, Rath D, Moltz J, Holland-Letz T, et al. Correlation between SUVmax and CT radiomic analysis using lymph node density in PET/CT-based lymph node staging. Journal of Nuclear Medicine. 2017;58(2):282-7.

    Article  CAS  PubMed  Google Scholar 

  62. Strosberg JR, Coppola D, Klimstra DS, Phan AT, Kulke MH, Wiseman GA, et al. The NANETS consensus guidelines for the diagnosis and management of poorly differentiated (high-grade) extrapulmonary neuroendocrine carcinomas. Pancreas. 2010;39(6):799.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Network NCC. NCCN Clinical Practice Guidelines in Oncology: Neuroendocrine and Adrenal Tumors. Version 1.2019. 2019.

  64. Gaujoux S, Partelli S, Maire F, D'Onofrio M, Larroque B, Tamburrino D, et al. Observational study of natural history of small sporadic nonfunctioning pancreatic neuroendocrine tumors. The Journal of Clinical Endocrinology & Metabolism. 2013;98(12):4784-9.

    Article  CAS  Google Scholar 

  65. Crippa S, Zerbi A, Boninsegna L, Capitanio V, Partelli S, Balzano G, et al. Surgical management of insulinomas: short-and long-term outcomes after enucleations and pancreatic resections. Archives of Surgery. 2012;147(3):261-6.

    Article  PubMed  Google Scholar 

  66. Falconi M, Bartsch DK, Eriksson B, Klöppel G, Lopes JM, O'connor JM, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differentiated pancreatic non-functioning tumors. Neuroendocrinology. 2012;95(2):120–34.

  67. Crippa S, Tamburrino D, Partelli S, Salvia R, Germenia S, Bassi C, et al. Total pancreatectomy: indications, different timing, and perioperative and long-term outcomes. Surgery. 2011;149(1):79-86.

    Article  PubMed  Google Scholar 

  68. Shah MH, Goldner WS, Halfdanarson TR, Bergsland E, Berlin JD, Halperin D, et al. NCCN guidelines insights: neuroendocrine and adrenal tumors, version 2.2018. Journal of the National Comprehensive Cancer Network. 2018;16(6):693–702.

  69. Rinke A, Muller H, Schade-Brittinger C, Klose K-J, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27(28):4656-63.

    Article  CAS  PubMed  Google Scholar 

  70. Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. New England Journal of Medicine. 2014;371(3):224-33.

    Article  PubMed  CAS  Google Scholar 

  71. Bajetta E, Catena L, Procopio G, De Dosso S, Bichisao E, Ferrari L, et al. Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours? Cancer chemotherapy and pharmacology. 2007;59(5):637-42.

    Article  CAS  PubMed  Google Scholar 

  72. Brixi-Benmansour H, Jouve J-L, Mitry E, Bonnetain F, Landi B, Hentic O, et al. Phase II study of first-line FOLFIRI for progressive metastatic well-differentiated pancreatic endocrine carcinoma. Digestive and Liver Disease. 2011;43(11):912-6.

    Article  CAS  PubMed  Google Scholar 

  73. Engstrom PF, Lavin P, Moertel C, Folsch E, Douglass Jr H. Streptozocin plus fluorouracil versus doxorubicin therapy for metastatic carcinoid tumor. Journal of Clinical Oncology. 1984;2(11):1255-9.

    Article  CAS  PubMed  Google Scholar 

  74. Strosberg JR, Fine RL, Choi J, Nasir A, Coppola D, Chen DT, et al. First‐line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer. 2011;117(2):268-75.

    Article  CAS  PubMed  Google Scholar 

  75. Kouvaraki MA, Ajani JA, Hoff P, Wolff R, Evans DB, Lozano R, et al. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J Clin Oncol. 2004;22(23):4762-71.

    Article  CAS  PubMed  Google Scholar 

  76. Moertel CG, Lefkopoulo M, Lipsitz S, Hahn RG, Klaassen D. Streptozocin–doxorubicin, streptozocin–fluorouracil, or chlorozotocin in the treatment of advanced islet-cell carcinoma. New England Journal of Medicine. 1992;326(8):519-23.

    Article  CAS  PubMed  Google Scholar 

  77. Sun W, Lipsitz S, Catalano P, Mailliard JA, Haller DG. Phase II/III study of doxorubicin with fluorouracil compared with streptozocin with fluorouracil or dacarbazine in the treatment of advanced carcinoid tumors: Eastern Cooperative Oncology Group Study E1281. Journal of Clinical Oncology. 2005;23(22):4897-904.

    Article  CAS  PubMed  Google Scholar 

  78. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. New England Journal of Medicine. 2011;364(6):514-23.

    Article  CAS  PubMed  Google Scholar 

  79. Lombard-Bohas C, Yao JC, Hobday T, Van Cutsem E, Wolin EM, Panneerselvam A, et al. Impact of prior chemotherapy use on the efficacy of everolimus in patients with advanced pancreatic neuroendocrine tumors: a subgroup analysis of the phase III RADIANT-3 trial. Pancreas. 2015;44(2):181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ito T, Okusaka T, Ikeda M, Tajima T, Kasuga A, Fujita Y, et al. Everolimus versus placebo in Japanese patients with advanced pancreatic neuroendocrine tumors (pNET): Japanese subgroup analysis of RADIANT-3. Journal of Clinical Oncology. 2011;29(4_suppl):289-.

  81. Jensen RT, Cadiot G, Brandi ML, De Herder WW, Kaltsas G, Komminoth P, et al. ENETS consensus guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology. 2012;95(2):98-119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. The Lancet. 2016;387(10022):968-77.

    Article  CAS  Google Scholar 

  83. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. New England Journal of Medicine. 2017;376(2):125-35.

    Article  CAS  PubMed  Google Scholar 

  84. Brabander T, Van der Zwan WA, Teunissen JJ, Kam BL, Feelders RA, de Herder WW, et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3] octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clinical Cancer Research. 2017;23(16):4617-24.

    Article  CAS  PubMed  Google Scholar 

  85. Devcic Z, Rosenberg J, Braat AJ, Techasith T, Banerjee A, Sze DY, et al. The efficacy of hepatic 90Y resin radioembolization for metastatic neuroendocrine tumors: a meta-analysis. Journal of Nuclear Medicine. 2014;55(9):1404-10.

    Article  CAS  PubMed  Google Scholar 

  86. Fendrich V, Langer P, Celik I, Bartsch DK, Zielke A, Ramaswamy A, et al. An aggressive surgical approach leads to long-term survival in patients with pancreatic endocrine tumors. Annals of surgery. 2006;244(6):845.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pavel M, Baudin E, Couvelard A, Krenning E, Öberg K, Steinmüller T, et al. ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157-76.

    Article  CAS  PubMed  Google Scholar 

  88. Mayo SC, Herman JM, Cosgrove D, Bhagat N, Kamel I, Geschwind JF, et al. Emerging approaches in the management of patients with neuroendocrine liver metastasis: role of liver-directed and systemic therapies. J Am Coll Surg. 2013;216(1):123-34.

    Article  PubMed  Google Scholar 

  89. Steinmüller T, Kianmanesh R, Falconi M, Scarpa A, Taal B, Kwekkeboom DJ, et al. Consensus guidelines for the management of patients with liver metastases from digestive (neuro) endocrine tumors: foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2008;87(1):47-62.

    Article  PubMed  CAS  Google Scholar 

  90. Baudin E, Planchard D, Scoazec J-Y, Guigay J, Dromain C, Hadoux J, et al. Intervention in gastro-enteropancreatic neuroendocrine tumours. Best Practice & Research Clinical Gastroenterology. 2012;26(6):855-65.

    Article  Google Scholar 

  91. Ronot M, Clift AK, Baum RP, Singh A, Kulkarni HR, Frilling A, et al. Morphological and functional imaging for detecting and assessing the resectability of neuroendocrine liver metastases. Neuroendocrinology. 2018;106(1):74-88.

    Article  CAS  PubMed  Google Scholar 

  92. Gibril F, Jensen R. Comparative analysis of diagnostic techniques for localization of gastrointestinal neuroendocrine tumors. The Yale journal of biology and medicine. 1997;70(5-6):509.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ćwikła JB, Buscombe JR, Caplin ME, Watkinson AF, Walecki J, Gorczyca-Wiśniewska E, et al. Diagnostic imaging of carcinoid metastases to the abdomen and pelvis. Medical Science Monitor. 2004;10(3):9-16.

    PubMed  Google Scholar 

  94. Chambers AJ, Pasieka JL, Dixon E, Rorstad O. Role of imaging in the preoperative staging of small bowel neuroendocrine tumors. Journal of the American College of Surgeons. 2010;211(5):620-7.

    Article  PubMed  Google Scholar 

  95. Elias D, Lasser P, Ducreux M, Duvillard P, Ouellet J-F, Dromain C, et al. Liver resection (and associated extrahepatic resections) for metastatic well-differentiated endocrine tumors: a 15-year single center prospective study. Surgery. 2003;133(4):375-82.

    Article  PubMed  Google Scholar 

  96. WIEDENMAN B. Consensus Conference, Preoperative Diagnosis and Surgical Management of Neuroendocrine Gastroenteropancreatic Tumors: general recommendations by a consensus workshop. World J Surg. 1998;22:309-18.

    Article  Google Scholar 

  97. Li G, Tian ML, Bing YT, Tao LY, Wang HY, Jiang B, et al. Clinicopathological features and prognosis factors for survival in elderly patients with pancreatic neuroendocrine tumor: A STROBE-compliant article. Medicine (Baltimore). 2019;98(11):e14576.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kose E, Kahramangil B, Aydin H, Donmez M, Takahashi H, Aucejo F, et al. Outcomes of laparoscopic tumor ablation for neuroendocrine liver metastases: a 20-year experience. Surg Endosc. 2020;34(1):249-56.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

SAR Neuroendocrine DFP initiative

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajaykumar C. Morani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, M., Bhosale, P.R., Yano, M. et al. New frontiers in imaging including radiomics updates for pancreatic neuroendocrine neoplasms. Abdom Radiol 47, 3078–3100 (2022). https://doi.org/10.1007/s00261-020-02833-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02833-8

Keywords

Navigation