Skip to main content
Log in

Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors?

  • Hepatobiliary-Pancreas
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate MRI derived whole-tumour histogram analysis parameters in predicting pancreatic neuroendocrine neoplasm (panNEN) grade and aggressiveness.

Methods

Pre-operative MR of 42 consecutive patients with panNEN >1 cm were retrospectively analysed. T1-/T2-weighted images and ADC maps were analysed. Histogram-derived parameters were compared to histopathological features using the Mann-Whitney U test. Diagnostic accuracy was assessed by ROC-AUC analysis; sensitivity and specificity were assessed for each histogram parameter.

Results

ADCentropy was significantly higher in G2-3 tumours with ROC-AUC 0.757; sensitivity and specificity were 83.3 % (95 % CI: 61.2–94.5) and 61.1 % (95 % CI: 36.1–81.7). ADCkurtosis was higher in panNENs with vascular involvement, nodal and hepatic metastases (p= .008, .021 and .008; ROC-AUC= 0.820, 0.709 and 0.820); sensitivity and specificity were: 85.7/74.3 % (95 % CI: 42–99.2 /56.4–86.9), 36.8/96.5 % (95 % CI: 17.2–61.4 /76–99.8) and 100/62.8 % (95 % CI: 56.1–100/44.9–78.1). No significant differences between groups were found for other histogram-derived parameters (p >.05).

Conclusions

Whole-tumour histogram analysis of ADC maps may be helpful in predicting tumour grade, vascular involvement, nodal and liver metastases in panNENs. ADCentropy and ADCkurtosis are the most accurate parameters for identification of panNENs with malignant behaviour.

Key Points

Whole-tumour ADC histogram analysis can predict aggressiveness in pancreatic neuroendocrine neoplasms.

ADC entropy and kurtosis are higher in aggressive tumours.

ADC histogram analysis can quantify tumour diffusion heterogeneity.

Non-invasive quantification of tumour heterogeneity can provide adjunctive information for prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AUC:

Area under the curve

G1:

Grade 1

G2:

Grade 2

G3:

Grade 3

GEP-NET:

Gastroentero-pancreatic neuroendocrine tumour

panNEN:

Pancreatic neuroendocrine neoplasm

ROC:

Receiver operating characteristic

ROI:

Region of interest

WHO:

World Health Organization

References

  1. Orditura M, Petrillo A, Ventriglia J et al (2016) Pancreatic neuroendocrine tumors: nosography, management and treatment. Int J Surg 28:S156–S162

    Article  PubMed  Google Scholar 

  2. Halfdanarson TR, Rabe KG, Rubin J, Petersen GM (2008) Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol 19:1727–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Falconi M, Eriksson B, Kaltsas G et al (2016) ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology 103:153–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crippa S, Partelli S, Zamboni G et al (2014) Incidental diagnosis as prognostic factor in different tumor stages of nonfunctioning pancreatic neuroendocrine tumors. Surgery 155:145–153

    Article  PubMed  Google Scholar 

  5. Cheema A, Weber J, Strosberg JR (2012) Incidental detection of pancreatic neuroendocrine tumors: an analysis of incidence and outcomes. Ann Surg Oncol 19:2932–2936

    Article  PubMed  Google Scholar 

  6. Bosman F, Carneiro F, Hruban R, Theise ND (2010) WHO Classification of Tumours of the Digestive System, 4th edn. IARC Press, Lyon

    Google Scholar 

  7. Li J, Lin J, Shi L et al (2016) How reliable is the Ki-67 cytological index in grading pancreatic neuroendocrine tumors? A meta-analysis. J Dig Dis 17:95–103

    Article  CAS  PubMed  Google Scholar 

  8. Weynand B, Borbath I, Bernard V et al (2014) Pancreatic neuroendocrine tumour grading on endoscopic ultrasound-guided fine needle aspiration: high reproducibility and inter-observer agreement of the Ki-67 labelling index. Cytopathology 25:389–395

    CAS  PubMed  Google Scholar 

  9. Hasegawa T, Yamao K, Hijioka S et al (2014) Evaluation of Ki-67 index in EUS-FNA specimens for the assessment of malignancy risk in pancreatic neuroendocrine tumors. Endoscopy 46:32–38

    Article  PubMed  Google Scholar 

  10. Jang KM, Kim SH, Lee SJ, Choi D (2014) The value of gadoxetic acid-enhanced and diffusion-weighted MRI for prediction of grading of pancreatic neuroendocrine tumors. Acta Radiol 55:140–148

    Article  PubMed  Google Scholar 

  11. Manfredi R, Bonatti M, Mantovani W et al (2013) Non-hyperfunctioning neuroendocrine tumours of the pancreas: MR imaging appearance and correlation with their biological behaviour. Eur Radiol 23:3029–3039

    Article  PubMed  Google Scholar 

  12. Rha SE, Jung SE, Lee KH, Ku YM, Byun JY, Lee JM (2007) CT and MR imaging findings of endocrine tumor of the pancreas according to WHO classification. Eur J Radiol 62:371–377

    Article  PubMed  Google Scholar 

  13. Lotfalizadeh E, Ronot M, Wagner M et al (2017) Prediction of pancreatic neuroendocrine tumour grade with MR imaging features: added value of diffusion-weighted imaging. Eur Radiol 27:1748–1759

    Article  PubMed  Google Scholar 

  14. Guo C, Chen X, Xiao W, Wang Q, Sun K, Wang Z (2017) Pancreatic neuroendocrine neoplasms at magnetic resonance imaging: Comparison between grade 3 and grade 1/2 tumors. Onco Targets Ther 10:1465–1474

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Robertis R, Cingarlini S, Tinazzi Martini P et al (2017) Pancreatic neuroendocrine neoplasms: Magnetic resonance imaging features according to grade and stage. World J Gastroenterol 23:275–285

    Article  PubMed  PubMed Central  Google Scholar 

  16. Toshima F, Inoue D, Komori T et al (2017) Is the combination of MR and CT findings useful in determining the tumor grade of pancreatic neuroendocrine tumors? Jpn J Radiol 35:1–12

    Article  Google Scholar 

  17. Canellas R, Lo G, Bhowmik S, Ferrone C, Sahani D (2017) Pancreatic neuroendocrine tumor: Correlations between MRI features, tumor biology, and clinical outcome after surgery. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25756

  18. Kim M, Kang TW, Kim YK et al (2016) Pancreatic neuroendocrine tumour: Correlation of apparent diffusion coefficient or WHO classification with recurrence-free survival. Eur J Radiol 85:680–687

    Article  PubMed  Google Scholar 

  19. Cortez E, Gladh H, Braun S et al (2016) Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD. Proc Natl Acad Sci 113:E864–E873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bélissant Benesty O, Cassou-Mounat T, Vatier C, Talbot JN, Montravers F (2016) Tumor Heterogeneity Detected by 68Ga DOTATOC and 18F-FDG PET/CTs in One Malignant Insulinoma with Involvement of the Portal Splenic Confluence and Ovarian Metastases. Clin Nucl Med 41:874–876

    Article  PubMed  Google Scholar 

  21. Rosenkrantz A (2013) Histogram-based apparent diffusion coefficient analysis: an emerging tool for cervical cancer characterization? AJR Am J Roentgenol 200:311–313

    Article  PubMed  Google Scholar 

  22. Nguyen HT, Shah ZK, Mortazavi A et al (2017) Non-invasive quantification of tumour heterogeneity in water diffusivity to differentiate malignant from benign tissues of urinary bladder: a phase I study. Eur Radiol 27:2146–2152

    Article  PubMed  Google Scholar 

  23. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589

    Article  PubMed  PubMed Central  Google Scholar 

  24. Just N (2014) Improving tumour heterogeneity MRI assessment with histograms. Br J Cancer 111:2205–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alic L, Niessen WJ, Veenland JF (2014) Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. Plos One 9:e110300

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pereira JA, Rosado E, Bali M, Metens T, Chao SL (2015) Pancreatic neuroendocrine tumors: correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade. Abdom Imaging 40:3122–3128

    Article  PubMed  Google Scholar 

  27. Sidhu HS, Benigno S, Ganeshan B et al (2017) Textural analysis of multiparametric MRI detects transition zone prostate cancer. Eur Radiol 27:2348–2358

    Article  PubMed  Google Scholar 

  28. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  29. Gillies R, Kinahan P, Hricak H (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  30. Umanodan T, Fukukura Y, Kumagae Y et al (2017) ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma. J Magn Reson Imaging 45:1195–1203

    Article  PubMed  Google Scholar 

  31. Xu X, Hu H, Su G et al (2016) Utility of histogram analysis of ADC maps for differentiating orbital tumors. Diagn Interv Radiol 22:161–167

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suo ST, Chen XX, Fan Y et al (2014) Histogram analysis of apparent diffusion coefficient at 3.0 T in urinary bladder lesions: Correlation with pathologic findings. Acad Radiol 21:1027–1034

    Article  PubMed  Google Scholar 

  33. Tsuchiya N, Doai M, Usuda K, Uramoto H, Tonami H (2017) Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion. PLoS One 12:e0172433

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schob S, Meyer HJ, Dieckow J et al (2017) Histogram analysis of diffusion weighted imaging at 3T is useful for prediction of lymphatic metastatic spread, proliferative activity, and cellularity in thyroid cancer. Int J Mol Sci 18(4):821

  35. King AD, Chow KK, Yu KH et al (2013) Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 266:531–538

    Article  PubMed  Google Scholar 

  36. Shindo T, Fukukura Y, Umanodan T et al (2016) Histogram Analysis of Apparent Diffusion Coefficient in Differentiating Pancreatic Adenocarcinoma and Neuroendocrine Tumor. Medicine (Baltimore) 95:e2574

    Article  CAS  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo De Robertis.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Mirko D’Onofrio.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Robertis, R., Maris, B., Cardobi, N. et al. Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors?. Eur Radiol 28, 2582–2591 (2018). https://doi.org/10.1007/s00330-017-5236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5236-7

Keywords

Navigation