Skip to main content
Log in

Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Choline PET/CT has shown limitations for the detection of primary prostate cancer and nodal metastatic disease, mainly due to limited sensitivity and specificity. Conversely in the restaging of prostate cancer recurrence, choline PET/CT is a promising imaging modality for the detection of local regional and nodal recurrence with an impact on therapy management. This review highlights current literature on choline PET/CT for radiation treatment planning in primary and recurrent prostate cancer. Due to limited sensitivity and specificity in differentiating between benign and malignant prostatic tissues in primary prostate cancer, there is little enthusiasm for target volume delineation based on choline PET/CT. Irradiation planning for the treatment of single lymph node metastases on the basis of choline PET/CT is controversial due to its limited lesion-based sensitivity in primary nodal staging. In high-risk prostate cancer, choline PET/CT might diagnose lymph node metastases, which potentially can be included in the conventional irradiation field. Prior to radiation treatment of recurrent prostate cancer, choline PET/CT may prove useful for patient stratification by excluding distant disease which would require systemic therapy. In patients with local recurrence, choline PET/CT can be used to delineate local sites of recurrence within the prostatic resection bed allowing a boost to PET-positive sites. In patients with lymph node metastases outside the prostatic fossa and regional metastatic lymph nodes, choline PET/CT might influence radiation treatment planning by enabling extension of the target volume to lymphatic drainage sites with or without a boost to PET-positive lymph nodes. Further clinical randomized trials are required to assess treatment outcomes following choline-based biological radiation treatment planning in comparison with conventional radiation treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kuban DA, Tucker SL, Dong L, Starkschall G, Huang EH, Cheung MR, et al. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70(1):67–74.

    Article  PubMed  Google Scholar 

  2. Kupelian PA, Ciezki J, Reddy CA, Klein EA, Mahadevan A. Effect of increasing radiation doses on local and distant failures in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008;71(1):16–22.

    Article  PubMed  Google Scholar 

  3. De Meerleer G, Villeirs G, Bral S, Paelinck L, De Gersem W, Dekuyper P, et al. The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol. 2005;75(3):325–33.

    Article  PubMed  Google Scholar 

  4. Fonteyne V, Villeirs G, Speleers B, De Neve W, De Wagter C, Lumen N, et al. Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys. 2008;72(3):799–807.

    Article  PubMed  Google Scholar 

  5. van Lin EN, Futterer JJ, Heijmink SW, van der Vight LP, Hoffmann AL, van Kollenburg P, et al. IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys. 2006;65(1):291–303.

    Article  PubMed  Google Scholar 

  6. Thorwarth D, Leibfarth S, Mönnich D. Potential role of PET/MRI in radiotherapy treatment planning. Clin Transl Imaging. 2013;1(1):45–51.

    Article  Google Scholar 

  7. Picchio M, Giovannini E, Crivellaro C, Gianolli L, di Muzio N, Messa C. Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother Oncol. 2010;96(3):347–50.

    Article  PubMed  Google Scholar 

  8. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  9. Smith RA, Cokkinides V, Eyre HJ. Cancer screening in the United States, 2007: a review of current guidelines, practices, and prospects. CA Cancer J Clin. 2007;57(2):90–104.

    Article  PubMed  CAS  Google Scholar 

  10. Farsad M, Schwarzenbock S, Krause BJ. PET/CT and choline: diagnosis and staging. Q J Nucl Med Mol Imaging. 2012;56(4):343–53.

    PubMed  CAS  Google Scholar 

  11. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol. 2002;42(1):18–23.

    Article  PubMed  Google Scholar 

  12. Kotzerke J, Prang J, Neumaier B, Volkmer B, Guhlmann A, Kleinschmidt K, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med. 2000;27(9):1415–9.

    Article  PubMed  CAS  Google Scholar 

  13. Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol. 2005;173(1):252–5.

    Article  PubMed  Google Scholar 

  14. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47(2):262–9.

    PubMed  Google Scholar 

  15. Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med. 2006;47(8):1249–54.

    PubMed  CAS  Google Scholar 

  16. Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology. 2005;235(2):623–8.

    Article  PubMed  Google Scholar 

  17. Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31(3):317–24.

    Article  PubMed  CAS  Google Scholar 

  18. Yamaguchi T, Lee J, Uemura H, Sasaki T, Takahashi N, Oka T, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging. 2005;32(7):742–8.

    Article  PubMed  CAS  Google Scholar 

  19. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med. 2005;46(10):1642–9.

    PubMed  CAS  Google Scholar 

  20. Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging. 2008;35(6):1065–73.

    Article  PubMed  CAS  Google Scholar 

  21. Martorana G, Schiavina R, Corti B, Farsad M, Salizzoni E, Brunocilla E, et al. 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol. 2006;176(3):954–60; discussion 60.

    Article  PubMed  CAS  Google Scholar 

  22. Scher B, Seitz M, Albinger W, Tiling R, Scherr M, Becker HC, et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging. 2007;34(1):45–53.

    Article  PubMed  Google Scholar 

  23. Souvatzoglou M, Weirich G, Schwarzenboeck S, Maurer T, Schuster T, Bundschuh RA, et al. The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res. 2011;17(11):3751–9.

    Article  PubMed  Google Scholar 

  24. Pinkawa M, Attieh C, Piroth MD, Holy R, Nussen S, Klotz J, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer – evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother Oncol. 2009;93(2):213–9.

    Article  PubMed  CAS  Google Scholar 

  25. Pinkawa M, Holy R, Piroth MD, Klotz J, Nussen S, Krohn T, et al. Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol. 2010;186(11):600–6.

    Article  PubMed  Google Scholar 

  26. Piert M, Park H, Khan A, Siddiqui J, Hussain H, Chenevert T, et al. Detection of aggressive primary prostate cancer with 11C-choline PET/CT using multimodality fusion techniques. J Nucl Med. 2009;50(10):1585–93.

    Article  PubMed  CAS  Google Scholar 

  27. Ikonen S, Karkkainen P, Kivisaari L, Salo JO, Taari K, Vehmas T, et al. Magnetic resonance imaging of clinically localized prostatic cancer. J Urol. 1998;159(3):915–9.

    Article  PubMed  CAS  Google Scholar 

  28. Zakian KL, Sircar K, Hricak H, Chen HN, Shukla-Dave A, Eberhardt S, et al. Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234(3):804–14.

    Article  PubMed  Google Scholar 

  29. Pinkawa M, Piroth MD, Holy R, Klotz J, Djukic V, Corral NE, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer – evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol. 2012;7:14.

    Article  PubMed  CAS  Google Scholar 

  30. Seppala J, Seppanen M, Arponen E, Lindholm P, Minn H. Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Radiother Oncol. 2009;93(2):234–40.

    Article  PubMed  CAS  Google Scholar 

  31. Park H, Meyer CR, Wood D, Khan A, Shah R, Hussain H, et al. Validation of automatic target volume definition as demonstrated for 11C-choline PET/CT of human prostate cancer using multi-modality fusion techniques. Acad Radiol. 2010;17(5):614–23.

    Article  PubMed  Google Scholar 

  32. Chang JH, Joon DL, Lee ST, Gong SJ, Scott AM, Davis ID, et al. Histopathological correlation of (11)C-choline PET scans for target volume definition in radical prostate radiotherapy. Radiother Oncol. 2011;99(2):187–92.

    Article  PubMed  Google Scholar 

  33. Chang JH, Lim Joon D, Lee ST, Gong SJ, Anderson NJ, Scott AM, et al. Intensity modulated radiation therapy dose painting for localized prostate cancer using 11C-choline positron emission tomography scans. Int J Radiat Oncol Biol Phys. 2012;83(5):e691–6.

    Article  PubMed  Google Scholar 

  34. Bundschuh RA, Wendl C, Weirich G, Souvatzoglou M, Treiber U, Geinitz H, et al. Tumour volume delineation in prostate cancer assessed by [(11)C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging. 2013. doi:10.1007/s00259-013-2345-7.

    PubMed  Google Scholar 

  35. Ciernik IF, Brown DW, Schmid D, Hany T, Egli P, Davis JB. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat. 2007;6(1):23–30.

    PubMed  Google Scholar 

  36. Niyazi M, Bartenstein P, Belka C, Ganswindt U. Choline PET based dose-painting in prostate cancer – modelling of dose effects. Radiat Oncol. 2010;5:23.

    Article  PubMed  Google Scholar 

  37. Schiavina R, Scattoni V, Castellucci P, Picchio M, Corti B, Briganti A, et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol. 2008;54(2):392–401.

    Article  PubMed  Google Scholar 

  38. Hacker A, Jeschke S, Leeb K, Prammer K, Ziegerhofer J, Sega W, et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F]fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol. 2006;176(5):2014–8; discussion 8–9.

    Article  PubMed  Google Scholar 

  39. Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(2):253–63.

    Article  PubMed  Google Scholar 

  40. Souvatzoglou M, Maurer T, Weirich G, Kuebler H, Treiber U. 11C-Choline PET/CT in staging of primary prostate cancer: A histological correlation of PET/CT findings with respect to nodal metastatic disease. Eur J Nucl Med Mol Imaging. 2011;38 Suppl 2.

  41. Krause BJ, Souvatzoglou M, Treiber U. Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol. 2011. doi:10.1016/j.urolonc.2010.08.008.

    PubMed  Google Scholar 

  42. Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50(9):1394–400.

    Article  PubMed  Google Scholar 

  43. Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(1):18–23.

    Article  PubMed  CAS  Google Scholar 

  44. Rischke HC, Knippen S, Kirste S, Grosu AL. Treatment of recurrent prostate cancer following radical prostatectomy: the radiation-oncologists point of view. Q J Nucl Med Mol Imaging. 2012;56(5):409–20.

    PubMed  CAS  Google Scholar 

  45. Stephenson AJ, Scardino PT, Kattan MW, Pisansky TM, Slawin KM, Klein EA, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25(15):2035–41.

    Article  PubMed  Google Scholar 

  46. Picchio M, Alongi F, Giovacchini G, Di Rosa E, Cozzarini C, Landoni C, et al. 11C-Choline PET/CT image-guided radiotherapeutic treatment of lymph nodal recurrence in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2008;35:288.

    Google Scholar 

  47. Souvatzoglou M, Krause BJ, Purschel A, Thamm R, Schuster T, Buck AK, et al. Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol. 2011;99(2):193–200.

    Article  PubMed  Google Scholar 

  48. Casamassima F, Masi L, Menichelli C, Bonucci I, Casamassima E, Lazzeri M, et al. Efficacy of eradicative radiotherapy for limited nodal metastases detected with choline PET scan in prostate cancer patients. Tumori. 2011;97(1):49–55.

    PubMed  CAS  Google Scholar 

  49. Würschmidt F, Petersen C, Wahl A, Dahle J, Kretschmer M. [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat Oncol. 2011;6:44.

    Article  PubMed  Google Scholar 

  50. Geinitz H, Riegel MG, Thamm R, Astner ST, Lewerenz C, Zimmermann F, et al. Outcome after conformal salvage radiotherapy in patients with rising prostate-specific antigen levels after radical prostatectomy. Int J Radiat Oncol Biol Phys. 2012;82(5):1930–7.

    Article  PubMed  Google Scholar 

  51. Swanson GP, Du F, Michalek JE, Hermans M. Long-term follow-up and risk of cancer death after radiation for post-prostatectomy rising prostate-specific antigen. Int J Radiat Oncol Biol Phys. 2011;80(1):62–8.

    Article  PubMed  Google Scholar 

  52. Souvatzoglou M, Kuebler H, Weirich G, Gschwend J, Schwaiger M, Krause BJ. 11C-Choline PET/CT in lymph node restaging of patients with relapse of prostate cancer undergoing salvage lymphadenectomy: comparison with histopathology. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 2.

  53. Schwarzenböck S, Protzel C, Heuschkel M, Kurth J, Hakenberg OW, Krause BJ. Dual-phase F-18 choline PET/CT positive lymph nodes in patients with recurrent prostate cancer and salvage lymphadenectomy – correlation with histopathology. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 2.

  54. Wang H, Vees H, Miralbell R, Wissmeyer M, Steiner C, Ratib O, et al. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer. Radiother Oncol. 2009;93(2):220–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Krause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarzenböck, S.M., Kurth, J., Gocke, C. et al. Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer. Eur J Nucl Med Mol Imaging 40 (Suppl 1), 28–35 (2013). https://doi.org/10.1007/s00259-013-2404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2404-0

Keywords

Navigation