Skip to main content
Log in

Intensity-Modulated Radiotherapy for Prostate Cancer Implementing Molecular Imaging with 18F-Choline PET-CT to Define a Simultaneous Integrated Boost

Intensitätsmodulierte Radiotherapie des Prostatakarzinoms mit simultanem integrierten Boost nach molekularer Bildgebung mit 18F-Cholin-PET-CT

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose:

To report the own experience with 66 patients who received 18F-choline PET-CT (positron emission tomography-computed tomography) for treatment planning.

Patients and Methods:

Image acquisition followed 1 h after injection of 178–355 MBq 18F-choline. An intraprostatic lesion (GTVPET [gross tumor volume]) was defined by a tumor-to-background SUV (standard uptake value) ratio > 2. A dose of 76 Gy was prescribed to the prostate in 2-Gy fractions, with a simultaneous integrated boost up to 80 Gy.

Results:

A boost volume could not be defined for a single patient. One, two and three or more lesions were found for 36 (55%), 22 (33%) and seven patients (11%). The lobe(s) with a positive biopsy correlated with a GTVPET in the same lobe in 63 cases (97%). GTVPET was additionally defined in 33 of 41 prostate lobes (80%) with only negative biopsies. GTVPET, SUVmean and SUVmax were found to be dependent on well-known prognostic risk factors, particularly T-stage and Gleason Score. In multivariate analysis, Gleason Score > 7 resulted as an independent factor for GTVPET > 8 cm3 (hazard ratio 5.5; p = 0.02) and SUVmax > 5 (hazard ratio 4.4; p = 0.04). Neoadjuvant hormonal treatment (NHT) did not affect SUV levels. The mean EUDs (equivalent uniform doses) to the rectum and bladder (55.9 Gy and 54.8 Gy) were comparable to patients (n = 18) who were treated in the same period without a boost (54.3 Gy and 55.6 Gy).

Conclusion:

Treatment planning with 18F-choline PET-CT allows the definition of an integrated boost in nearly all prostate cancer patients – including patients after NHT – without considerably affecting EUDs for the organs at risk. GTVPET and SUV levels were found to be dependent on prognostic risk factors, particularly Gleason Score.

Zusammenfassung

Ziel:

Erfahrungsbericht mit 66 Patienten nach 18F-Cholin-PET-CT (Positronenemissionstompgraphie-Computertomographie) zur Bestrahlungsplanung.

Patienten und Methodik:

Die Bildakquisition erfolgte 1 h nach Injektion von 178–355 MBq 18F-Cholin. Ein intraprostatischer Herd (GTVPET [makroskopisches Tumorvolumen]) wurde ab einem Tumor-zu-Hintergrund-SUV-(„standard uptake value“-)Quotienten > 2 definiert. Die Verschreibungsdosis für die Prostata betrug 76 Gy in 2-Gy-Einzeldosen mit simultanem integrierten Boost bis 80 Gy.

Ergebnisse:

Ein Boostvolumen konnte bei einem Patienten nicht definiert werden. Ein, zwei und drei oder mehr Herde wurden bei 36 (55 %), 22 (33 %) und sieben Patienten (11 %) gefunden. Der/die Lappen mit positiver Biopsie korrelierte/n in 63 Fallen (97 %)mit dem GTVPET im gleichen Lappen. Zusätzlich wurde ein GTVPET in 33 von 41 Lappen (80 %) mit nur negativen Biopsien definiert. GTVPET, SUVmean und SUVmax zeigten eine Abhängigkeit von bekannten Risikofaktoren, insbesondere T-Stadium und Gleason-Score. In multivariater Analyse resultierte ein Gleason-Score > 7 als ein unabhängiger Faktor für GTVPET > 8 cm3 (relatives Risiko 5,5; p = 0,02) und SUVmax > 5 (relatives Risiko 4,4; p = 0,04). Eine neoadjuvante Hormontherapie (NHT) war ohne Einfluss auf SUV-Werte. Die mittleren EUDs („equivalent uniform doses“) für Rektum und Blase (55,9 Gy und 54,8 Gy) waren vergleichbar zu Patienten (n = 18), die in der gleichen Periode ohne Boost bestrahlt wurden (54,3 Gy und 55,6 Gy).

Schlussfolgerung:

Die Bestrahlungsplanung nach 18F-Cholin-PET-CT ermöglicht die Definition eines integrierten Boostvolumens bei nahezu allen Patienten mit Prostatakarzinom – einschließlich Patienten nach NHT – ohne einen relevanten Einfluss auf die EUDs für die Risikoorgane. GTVPET- und SUV-Werte zeigten eine Abhängigkeit von prognostischen Risikofaktoren, insbesondere dem Gleason-Score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Mamgani A, van Putten WL, Heemsbergen WD, et al. Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2008;72:980–8

    PubMed  Google Scholar 

  2. Bartelink H, Horiot JC, Poortmans PM, et al. Impact of higher radiation dose on local control and survival after breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol 2007;25:3259–65

    Article  PubMed  Google Scholar 

  3. Bohrer M, Schroder P, Welzel G, et al. Reduced rectal toxicity with ultrasound- based image guided radiotherapy using BAT (B-mode acquisition and targeting system) for prostate cancer. Strahlenther Onkol 2008;184:674–8

    Article  PubMed  Google Scholar 

  4. Brenner DJ. Fractionation and late rectal toxicity. Int J Radiat Oncol Biol Phys 2004;60:1013–5

    PubMed  Google Scholar 

  5. Burman C, Kutcher GJ, Emami B, et al. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 1991;21:123–35

    CAS  PubMed  Google Scholar 

  6. Cellini N, Morganti AG, Mattiucci GC, et al. Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys 2002;53:595–9

    PubMed  Google Scholar 

  7. Chen ME, Johnston DA, Tang K, et al. Detailed mapping of prostate carcinoma foci: biopsy strategy implications. Cancer 2000;89:1800–9

    Article  CAS  PubMed  Google Scholar 

  8. De Meerleer G, Villeirs G, Bral S, et al. The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity- modulated radiotherapy. Radiother Oncol 2005;75:325–33

    Article  PubMed  Google Scholar 

  9. De Meerleer GO, Vakaet L, Gersem W, et al. Radiotherapy of prostate cancer with or without intensity modulated beams: a planning comparison. Int J Radiat Oncol Biol Phys 2000;47:639–48

    Article  CAS  PubMed  Google Scholar 

  10. Dunscombe PB, Iftody S, Ploquin N, et al. The equivalent uniform dose as a severity metric for radiation treatment incidents. Radiother Oncol 2007;84:64–6

    Article  PubMed  Google Scholar 

  11. Effert PJ, Bares R, Handt S, et al. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 1996;155:994–8

    Article  CAS  PubMed  Google Scholar 

  12. Emami B, Lyman JT, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109–22

    CAS  PubMed  Google Scholar 

  13. Farsad M, Schiavina R, Castellucci P, et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005;46:1642–9

    CAS  PubMed  Google Scholar 

  14. Fonteyne V, Villeirs G, Speleers B, et al. Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 2008;72:799–807

    PubMed  Google Scholar 

  15. Giovacchini G, Picchio M, Coradeschi E, et al. [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 2008;35:1065–73

    Article  CAS  PubMed  Google Scholar 

  16. Goldner G, Dimopoulos J, Kirisits C, et al. Moderate dose escalation in three-dimensional conformal localized prostate cancer radiotherapy: single- institutional experience in 398 patients comparing 66 Gy versus 70 Gy versus 74 Gy. Strahlenther Onkol 2009;185:438–45

    Article  PubMed  Google Scholar 

  17. International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy. ICRU report 50. Bethesda: International Commission on Radiation Units and Measurements, 1993

  18. Kohler FM, Boda-Heggemann J, Kupper B, et al. Phantom measurements to quantify the accuracy of a commercially available cone-beam CT gray-value matching algorithm using multiple fiducials. Strahlenther Onkol 2009;185:49–55

    Article  PubMed  Google Scholar 

  19. Kuban DA, Tucker SL, Dong L, et al. Long-term results of the M.D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 2008;70:67–74

    PubMed  Google Scholar 

  20. Kwee SA, Thibault GP, Stack RS, et al. Use of step-section histopathology to evaluate 18F-fluorocholine PET sextant localization of prostate cancer. Mol Imaging 2008;7:12–20

    PubMed  Google Scholar 

  21. Kwee SA, Wei H, Sesterhenn I, et al. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 2006;47:262–9

    PubMed  Google Scholar 

  22. Lee CT, Dong L, Ahamad AW, et al. Comparison of treatment volumes and techniques in prostate cancer radiation therapy. Am J Clin Oncol 2005;28:618–25

    Article  PubMed  Google Scholar 

  23. Mazaheri Y, Shukla-Dave A, Hricak H, et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging – correlation with pathologic findings. Radiology 2008;246:480–8

    Article  PubMed  Google Scholar 

  24. McNair HA, Hansen VN, Parker CC, et al. A comparison of the use of bony anatomy and internal markers for offline verification and an evaluation of the potential benefit of online and offline verification protocols for prostate radiotherapy. Int J Radiat Oncol Biol Phys 2008;71:41–50

    PubMed  Google Scholar 

  25. Piert M, Park H, Khan A, et al. Detection of aggressive primary prostate cancer with 11C-choline PET/CT using multimodality fusion techniques. J Nucl Med 2009;50:1585–93

    Article  CAS  PubMed  Google Scholar 

  26. Pinkawa M, Attieh C, Piroth M, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer – evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother Oncol 2009;93:213–9

    Article  CAS  PubMed  Google Scholar 

  27. Pinkawa M, Pursch-Lee M, Asadpour B, et al. Image-guided radiotherapy for prostate cancer. Implementation of ultrasound-based prostate localization for the analysis of inter- and intrafraction motion. Strahlenther Onkol 2008;184:679–85

    Article  PubMed  Google Scholar 

  28. Polat B, Guenther I, Wilbert J, et al. Intra-fractional uncertainties in image- guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 2008;184:668–73

    Article  PubMed  Google Scholar 

  29. Reske SN, Blumstein NM, Glatting G. Weiterentwicklung der PET und des PET/CT beim Prostatakarzinom. Urologe 2006;45:707–14

    Article  CAS  PubMed  Google Scholar 

  30. Reske SN, Blumstein NM, Neumaier B, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 2006;47:1249–54

    CAS  PubMed  Google Scholar 

  31. Sautter-Bihl ML, Budach W, Dunst J, et al. DEGRO practical guidelines for radiotherapy of breast cancer I. Breast-conserving therapy. Strahlenther Onkol 2007;183:661–6

    Article  PubMed  Google Scholar 

  32. Scales CD, Presti JC, Kane CJ, et al. Predicting unilateral prostate cancer based on biopsy features: implications for focal ablative therapy – results from the SEARCH database. J Urol 2007;178:1249–52

    Article  PubMed  Google Scholar 

  33. Seppala J, Seppanen M, Arponen E, et al. Carbon-11 acetate PET/CT based dose escalated IMRT in prostate cancer. Radiother Oncol 2009;93:234–40

    Article  CAS  PubMed  Google Scholar 

  34. Sutinen E, Nurmi M, Roivainen A, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 2004;31:317–24

    Article  CAS  PubMed  Google Scholar 

  35. Tareen B, Godoy G, Taneja S. Focal therapy: a new paradigm for the treatment of prostate cancer. Rev Urol 2009;11:203–12

    PubMed  Google Scholar 

  36. Turpen R, Rosser CJ. Focal therapy for prostate cancer: revolution or evolution? BMC Urol 2009;9:2

    Article  PubMed  Google Scholar 

  37. van Lin EN, Futterer JJ, Heijmink SW, et al. IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 2006;65:291–303

    PubMed  Google Scholar 

  38. Viani GA, Stefano EJ, Afonso SL, et al. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys 2009;74:1405–18

    PubMed  Google Scholar 

  39. Vitolo V, Millender L, Quivey JM, et al. Assessment of carotid artery dose in the treatment of nasopharyngeal cancer with IMRT versus conventional radiotherapy. Radiother Oncol 2009;90:213–20

    Article  PubMed  Google Scholar 

  40. Wang J, Bai S, Chen N, et al. The clinical feasibility of online cone beam computer tomography-guided intensity-modulated radiotherapy for nasopharyngeal cancer. Radiother Oncol 2009;90:221–7

    Article  PubMed  Google Scholar 

  41. Wu Q, Mohan R, Niemierko A, et al. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 2002;52:224–35

    PubMed  Google Scholar 

  42. Yamaguchi T, Lee J, Uemura H, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 2005;32:742–8

    Article  CAS  PubMed  Google Scholar 

  43. Yaparpalvi R, Hong L, Mah D, et al. ICRU reference dose in an era of intensity- modulated radiation therapy clinical trials: correlation with planning target volume mean dose and suitability for intensity-modulated radiation therapy dose prescription. Radiother Oncol 2009;89:347–52

    Article  Google Scholar 

  44. Zietman AL, DeSilvio M, Slater JD, et al. Comparison of conventional-dose vs high-dose radiation therapy in clinically localized adenocarcinoma of the prostate. JAMA 2005;294:1233–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pinkawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinkawa, M., Holy, R., Piroth, M.D. et al. Intensity-Modulated Radiotherapy for Prostate Cancer Implementing Molecular Imaging with 18F-Choline PET-CT to Define a Simultaneous Integrated Boost. Strahlenther Onkol 186, 600–606 (2010). https://doi.org/10.1007/s00066-010-2122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2122-5

Key Words

Schlüsselwörter

Navigation