Skip to main content
Log in

Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Recent studies have suggested that positron emission tomography (PET) imaging with 68Ga-labelled DOTA-somatostatin analogues (SST) like octreotide and octreotate is useful in diagnosing neuroendocrine tumours (NETs) and has superior value over both CT and planar and single photon emission computed tomography (SPECT) somatostatin receptor scintigraphy (SRS). The aim of the present study was to evaluate the role of 68Ga-DOTA-1-NaI3-octreotide (68Ga-DOTANOC) in patients with SST receptor-expressing tumours and to compare the results of 68Ga-DOTA-D-Phe1-Tyr3-octreotate (68Ga-DOTATATE) in the same patient population.

Methods

Twenty SRS were included in the study. Patients’ age (n = 20) ranged from 25 to 75 years (mean 55.4 ± 12.7 years). There were eight patients with well-differentiated neuroendocrine tumour (WDNET) grade1, eight patients with WDNET grade 2, one patient with poorly differentiated neuroendocrine carcinoma (PDNEC) grade 3 and one patient with mixed adenoneuroendocrine tumour (MANEC). All patients had two consecutive PET studies with 68Ga-DOTATATE and 68Ga-DOTANOC. All images were evaluated visually and maximum standardized uptake values (SUVmax) were also calculated for quantitative evaluation.

Results

On visual evaluation both tracers produced equally excellent image quality and similar body distribution. The physiological uptake sites of pituitary and salivary glands showed higher uptake in 68Ga-DOTATATE images. Liver and spleen uptake values were evaluated as equal. Both 68Ga-DOTATATE and 68Ga-DOTANOC were negative in 6 (30 %) patients and positive in 14 (70 %) patients. In 68Ga-DOTANOC images only 116 of 130 (89 %) lesions could be defined and 14 lesions were missed because of lack of any uptake. SUVmax values of lesions were significantly higher on 68Ga-DOTATATE images.

Conclusion

Our study demonstrated that the images obtained by 68Ga-DOTATATE and 68Ga-DOTANOC have comparable diagnostic accuracy. However, 68Ga-DOTATATE seems to have a higher lesion uptake and may have a potential advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008;26:3063–72.

    Article  PubMed  Google Scholar 

  2. Schaer JC, Waser B, Mengod G, Reubi JC. Somatostatin receptor subtypes sst1, sst2, sst3 and sst5 expression in human pituitary, gastroentero-pancreatic and mammary tumors: comparison of mRNA analysis with receptor autoradiography. Int J Cancer 1997;70:530–7.

    Article  PubMed  CAS  Google Scholar 

  3. Zamora V, Cabanne A, Salanova R, Bestani C, Domenichini E, Marmissolle F, et al. Immunohistochemical expression of somatostatin receptors in digestive endocrine tumours. Dig Liver Dis 2010;42:220–5.

    Article  PubMed  CAS  Google Scholar 

  4. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Ejick CH, Valkema R, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2010;17:R53–73.

    Article  PubMed  CAS  Google Scholar 

  5. Srirajkanthan R, Kayani I, Quigley AM, Soh J, Caplin ME, Bomanji J. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy. J Nucl Med 2010;51:875–82.

    Article  Google Scholar 

  6. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. Ga68-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  7. Krausz Y, Freedman N, Rubinstein R, Lavie E, Orevi M, Tshori S, et al. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: comparison with 111In-DTPA-octreotide (OctreoScan). Mol Imaging Biol 2011;13:583–93.

    Article  PubMed  Google Scholar 

  8. Frilling A, Sotiropoulos C, Radtke A, Malago M, Bockisch A, Kuehl H, et al. The impact of 68Ga-DOTATOC positron emission tomography/computed tomography on multimodal management of patients with neuroendocrine tumors. Ann Surg 2010;252:850–6.

    Article  PubMed  Google Scholar 

  9. Putzer D, Gabriel M, Henninger B, Kendler D, Uprimny C, Dobrozemsky G, et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 2009;50:1214–21.

    Article  PubMed  Google Scholar 

  10. Ambrossini V, Campana D, Bodei L, Nanni C, Castellucci P, Allegri V, et al. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med 2010;51:669–73.

    Article  Google Scholar 

  11. Pettino C, Sarnelli A, Di Donna M, Civollani S, Nanni C, Montini G, et al. 68Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2008;35:72–9.

    Article  Google Scholar 

  12. Decristoforo C, Knopp R, von Guggenberg E, Rupprich M, Dreger T, Hess A, et al. A fully automated synthesis fort he preparation of 68Ga-labelled peptides. Nucl Med Commun 2007;28:870–5.

    Article  PubMed  CAS  Google Scholar 

  13. Shastry M, Kayani I, Wild D, Caplin M, Visvikis D, Gacinovic S, et al. Distribution pattern of 68Ga-DOTATATE in disease-free patients. Nucl Med Commun 2010;31:1025–32.

    PubMed  Google Scholar 

  14. Prasad V, Baum RP. Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging 2010;54:61–7.

    PubMed  CAS  Google Scholar 

  15. Asnacios A, Courbon F, Rochaix P, Bauvin E, Cances-Lauwers V, Susini C, et al. Indium-111-pentetreotide scintigraphy and somatostatin receptor subtype 2 expression: new prognostic factors for malignant well-differentiated endocrine tumors. J Clin Oncol 2008;26:963–70.

    Article  PubMed  Google Scholar 

  16. Campana D, Ambrossini V, Pezzilli R, Fanti S, Labate AM, Santini D, et al. Standardized uptake values of (68)Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med 2010;51:353–9.

    Article  PubMed  Google Scholar 

  17. Miederer M, Seidl S, Buck A, Scheidhauer K, Wester HJ, Schwaiger M, et al. Correlation of immunohistopathological expression of somatostatin receptor 2 with standardised uptake values in 68Ga-DOTATOC PET/CT. Eur J Nucl Med Mol Imaging 2009;36:48–52.

    Article  PubMed  CAS  Google Scholar 

  18. Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000;27:273–82.

    Article  PubMed  CAS  Google Scholar 

  19. Wild D, Schmitt JS, Ginj M, Mäcke H, Bernard BF, Krenning E, et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 2003;30:1338–47.

    Article  PubMed  CAS  Google Scholar 

  20. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 2007;34:982–93.

    Article  PubMed  CAS  Google Scholar 

  21. Kulaksiz H, Eissele R, Rössler D, Schulz S, Höllt V, Cetin Y, et al. Identification of somatostatin receptor subtypes 1, 2A, 3, and 5 in neuroendocrine tumours with subtype specific antibodies. Gut 2002;50:52–60.

    Article  PubMed  CAS  Google Scholar 

  22. Kaemmerer D, Peter L, Lupp A, Schulz S, Sänger J, Prasad V, et al. Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2011;38:1659–68.

    Article  PubMed  CAS  Google Scholar 

  23. Nasir A, Stridsberg M, Strosberg J, Su PH, Livingston S, Malik HA, et al. Somatostatin receptor profiling in hepatic metastases from small intestinal and pancreatic neuroendocrine neoplasms: immunohistochemical approach with potential clinical utility. Cancer Control 2006;13:52–60.

    PubMed  Google Scholar 

  24. Basu S, Abhyankar A, Kand P, Kumar R, Asopa R, Rajan MG, et al. ‘Reverse discordance’ between 68Ga-DOTA-NOC PET/CT and 177Lu-DOTA-TATE posttherapy scan: the plausible explanations and its implications for high-dose therapy with radiolabeled somatostatin receptor analogs. Nucl Med Commun 2011;32:654–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was a part of COST Action BM0607 “Targeted Radionuclide Therapy” and supported by Scientific Research Projects Coordination Unit of Istanbul University. Project number 3264 and Turkish Scientific and Research Council (TUBITAK) with project no: 109S101

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Kabasakal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabasakal, L., Demirci, E., Ocak, M. et al. Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 39, 1271–1277 (2012). https://doi.org/10.1007/s00259-012-2123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2123-y

Keywords

Navigation