Skip to main content

Advertisement

Log in

Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Mitochondrial dysfunction has been attributed a critical role in the etiology and pathogenesis of numerous diseases, and is manifested by alterations of the organelle’s membrane potential (Δψm). This suggests that Δψm measurement can be highly useful for diagnostic purposes. In the current study, we characterized the capability of the novel PET agent 18F-fluorobenzyl triphenylphosphonium (18F-FBnTP) to assess Δψm, compared with the well-established voltage sensor 3H-tetraphenylphosphonium (3H-TPP).

Methods

18F-FBnTP and 3H-TPP uptake under conditions known to alter Δψm and plasma membrane potential (Δψp) was assayed in the H345 lung carcinoma cell line. 18F-FBnTP biodistribution was assessed in CD1 mice using dynamic PET and ex vivo gamma well counting.

Results

18F-FBnTP and 3H-TPP demonstrated similar uptake kinetics and plateau concentrations in H345 cells. Stepwise membrane depolarization resulted in a linear decrease in 18F-FBnTP cellular uptake, with a slope (−0.58±0.06) and correlation coefficient (0.94±0.07) similar (p>0.17) to those measured for 3H-TPP (−0.63±0.06 and 0.96±0.05, respectively). Selective collapse of Δψm caused a substantial decrease in cellular uptake for 18F-FBnTP (81.6±8.1%) and 3H-TPP (85.4±6.7%), compared with control. Exposure to the proapoptotic staurosporine, known to collapse Δψm, resulted in a decrease of 68.7±10.1% and 71.5±8.4% in 18F-FBnTP and 3H-TPP cellular uptake, respectively. 18F-FBnTP accumulated mainly in kidney, heart and liver.

Conclusion

18F-FBnTP is a mitochondria-targeting PET radiopharmaceutical responsive to alterations in membrane potential with voltage-dependent performance similar to that of 3H-TPP. 18F-FBnTP is a promising new voltage sensor for detection of physiological and pathological processes associated with mitochondrial dysfunction, such as apoptosis, using PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 2004;25:365–451.

    PubMed  CAS  Google Scholar 

  2. Nicholls DG. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 2004;4:149–77.

    Article  PubMed  CAS  Google Scholar 

  3. Liberman EA, Skulachev VP. Conversion of biomembrane-produced energy into electric form. IV. General discussion. Biochim Biophys Acta 1970;216:30–42.

    Article  PubMed  CAS  Google Scholar 

  4. Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev 2000;41:235–50.

    Article  PubMed  CAS  Google Scholar 

  5. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004;305:626–9.

    Article  PubMed  CAS  Google Scholar 

  6. Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1998;1366:151–65.

    Article  PubMed  CAS  Google Scholar 

  7. Grinius LL, Jasaitis AA, Kadziauskas YP, Liberman EA, Skulachev VP, Topali VP, et al. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta 1970;216:1–12.

    Article  PubMed  CAS  Google Scholar 

  8. Ravert HT, Madar I, Dannals RF. Radiosynthesis of 3-[18F]-fluoropropyl and 4-[18F]-fluorobenzyl triarylphosphonium ions. J Label Compd Radiopharm 2004;47:469–76.

    Article  CAS  Google Scholar 

  9. Madar I, Ravert RT, Du Y, Hilton J, Dannels RF, Frost JJ, et al. Characterization of uptake of the new PET imaging compound [18F]fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med 2006;47:1359–66.

    PubMed  CAS  Google Scholar 

  10. Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence. Circulation 1990;82:1826–38.

    PubMed  CAS  Google Scholar 

  11. Pivovarova NB, Nguyen HV, Winters CA, Brantner CA, Smith CL, Andrews SB. Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons. J Neurosci 2004;24:5611–22.

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y, Seidel J, Tsui BM, Vaquero JJ, Pomper MG. Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 2006;47:1891–900.

    PubMed  Google Scholar 

  13. Freedman JC, Laris PC. Electrophysiology of cells and organelles: studies with optical potentiometric indicators. Int Rev Cytol Suppl 1981;12:177–246.

    PubMed  CAS  Google Scholar 

  14. Pancrazio JJ, Tabbara IA, Kim YI. Voltage-activated K+ conductance and cell proliferation in small-cell lung cancer. Anticancer Res 1993;13:1231–4.

    PubMed  CAS  Google Scholar 

  15. Wonderlin WF, Woodfork KA, Strobl JS. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol 1995;165:177–85.

    Article  PubMed  CAS  Google Scholar 

  16. Hanstein WG. Uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1976;456:129–48.

    PubMed  CAS  Google Scholar 

  17. Lichtshtein D, Dunlop K, Kaback HR, Blume AJ. Mechanism of monensin-induced hyperpolarization of neuroblastoma glioma hybrid NG108-15. Proc Natl Acad Sci U S A 1979;76:2580–4.

    Article  PubMed  CAS  Google Scholar 

  18. O’Brien TM, Carlson RM, Oliveira PJ, Wallace KB. Esterification prevents induction of the mitochondrial permeability transition by N-acetyl perfluorooctane sulfonamides. Chem Res Toxicol 2006;19:1305–12.

    Article  PubMed  CAS  Google Scholar 

  19. Stephans SE, Miller GW, Levey AI, Greenamyre JT. Acute mitochondrial and chronic toxicological effects of 1-methyl-4-phenylpyridinium in human neuroblastoma cells. Neurotoxicology 2002;23:569–80.

    Article  PubMed  CAS  Google Scholar 

  20. Cassarino DS, Swerdlow RH, Parks JK, Parker WD Jr, Bennett JP Jr. Cyclosporin A increases resting mitochondrial membrane potential in SY5Y cells and reverses the depressed mitochondrial membrane potential of Alzheimer’s disease cybrids. Biochem Biophys Res Commun 1998;248:168–73.

    Article  PubMed  CAS  Google Scholar 

  21. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 1997;411:77–82.

    Article  PubMed  CAS  Google Scholar 

  22. Appleby RD, Porteous WK, Hughes G, James AM, Shannon D, Wei YH, et al. Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. Eur J Biochem 1999;262:108–16.

    Article  PubMed  CAS  Google Scholar 

  23. Rottenberg H. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. J Membr Biol 1984;81:127–38.

    Article  PubMed  CAS  Google Scholar 

  24. Ross MF, Kelso GF, Blaikie FH, James AM, Cocheme HM, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc) 2005;70:222–30.

    Article  CAS  Google Scholar 

  25. Cheng Z, Winant RC, Gambhir SS. A new strategy to screen molecular imaging probe uptake in cell culture without radiolabeling using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Nucl Med 2005;46:878–86.

    PubMed  CAS  Google Scholar 

  26. Davis S, Weiss MJ, Wong JR, Lampidis TJ, Chen LB. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem 1985;260:13844–50.

    PubMed  CAS  Google Scholar 

  27. Nicholls DG, Ward MW. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 2000;23:166–74.

    Article  PubMed  CAS  Google Scholar 

  28. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998;17:1675–87.

    Article  PubMed  CAS  Google Scholar 

  29. Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther 2005;4:139–63.

    Article  PubMed  CAS  Google Scholar 

  30. Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 2002;51:159–67.

    Article  PubMed  CAS  Google Scholar 

  31. Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett 2000;475:267–72.

    Article  PubMed  CAS  Google Scholar 

  32. Joseph B, Marchetti P, Formstecher P, Kroemer G, Lewensohn R, Zhivotovsky B. Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene 2002;21:65–77.

    Article  PubMed  CAS  Google Scholar 

  33. Crow MT, Mani K, Nam YJ, Kitsis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 2004;95:957–70.

    Article  PubMed  CAS  Google Scholar 

  34. Kaushal GP, Basnakian AG, Shah SV. Apoptotic pathways in ischemic acute renal failure. Kidney Int 2004;66:500–6.

    Article  PubMed  CAS  Google Scholar 

  35. Hinescu ME. Cardiac apoptosis: from organ failure to allograft rejection. J Cell Mol Med 2001;5:143–52.

    Article  PubMed  CAS  Google Scholar 

  36. Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, et al. Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 2005;46:2035–50.

    PubMed  CAS  Google Scholar 

  37. Lahorte CM, Vanderheyden JL, Steinmetz N, Van de Wiele C, Dierckx RA, Slegers G. Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 2004;31:887–919.

    Article  PubMed  CAS  Google Scholar 

  38. Damianovich M, Ziv I, Heyman SN, Rosen S, Shina A, Kidron D, et al. ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur J Nucl Med Mol Imaging 2006;33:281–91.

    Article  PubMed  Google Scholar 

  39. Aloya R, Shirvan A, Grimberg H, Reshef A, Levin G, Kidron D, et al. Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 2006;11:2089–101.

    Article  PubMed  Google Scholar 

  40. Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 1988;4:155–81.

    Article  PubMed  CAS  Google Scholar 

  41. Madar I, Weiss L, Izbicki G. Preferential accumulation of 3H-tetraphenylphosphonium in non-small cell lung carcinoma in mice: comparison with99mTc-MIBI. J Nucl Med 2002;43:234–8.

    PubMed  CAS  Google Scholar 

  42. Madar I, Anderson JH, Szabo Z, Scheffel U, Kao PF, Ravert HT, et al. Enhanced uptake of [11C]TPMP in canine brain tumor: a PET study. J Nucl Med 1999;40:1180–5.

    PubMed  CAS  Google Scholar 

  43. Min JJ, Biswal S, Deroose C, Gambhir SS. Tetraphenylphosphonium as a novel molecular probe for imaging tumors. J Nucl Med 2004;45:636–43.

    PubMed  CAS  Google Scholar 

  44. Madar I, Scheffel U, Ravert HT, Dannals RF, Frost JJ. Differential distinction between tumor and inflammation using the voltage indicator [F-18]p-fluorobenzylriphenyl phosphonium (F-18]p-FBnTP): comparison with [F-18]FDG. J Nucl Med 2003;44:368.

    Google Scholar 

  45. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000;256:42–9.

    Article  PubMed  CAS  Google Scholar 

  46. Mow BM, Blajeski AL, Chandra J, Kaufmann SH. Apoptosis and the response to anticancer therapy. Curr Opin Oncol 2001;13:453–62.

    Article  PubMed  CAS  Google Scholar 

  47. Gros P, Talbot F, Tang-Wai D, Bibi E, Kaback HR. Lipophilic cations: a group of model substrates for the multidrug resistance transporter. Biochemistry 1992;31:1992–8.

    Article  PubMed  CAS  Google Scholar 

  48. Bibi E, Gros P, Kaback HR. Functional expression of mouse mdr1 inEscherichia coli. Proc Natl Acad Sci U S A 1993;90:9209–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hagai Rottenberg for fruitful discussions and James Fox for the acquisition of the PET scans. This work was supported in part by R24 CA92871.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igal Madar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madar, I., Ravert, H., Nelkin, B. et al. Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation. Eur J Nucl Med Mol Imaging 34, 2057–2065 (2007). https://doi.org/10.1007/s00259-007-0500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0500-8

Keywords

Navigation