Skip to main content

Advertisement

Log in

Primer on molecular imaging technology

  • Supplement
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

A wide range of technologies is available for in vivo, ex vivo, and in vitro molecular and cellular imaging. This article focuses on three key in vivo imaging system instrumentation technologies used in the molecular imaging research described in this special issue of Eur J Nucl Med Mol Imaging: positron emission tomography, single-photon emission computed tomography, and bioluminescence imaging. For each modality, the basics of how it works, important performance parameters, and the state-of-the-art instrumentation are described. Comparisons and integration of multiple modalities are also discussed. The principles discussed in this article apply to both human and small animal imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44:781–99

    Article  PubMed  Google Scholar 

  2. Levin CS. Design of a high resolution and high sensitivity scintillation crystal array for PET with nearly complete light collection. IEEE Trans Nucl Sci 2002;45(5):2236–43

    Article  Google Scholar 

  3. Tai YC, Chatziioannou AF, Yang YF, et al. The MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 2003;48(11):1519–37

    Article  PubMed  Google Scholar 

  4. Miyaoka RS, Kohlmyer SG, Lewellen TK. Performance characteristics of micro crystal element (MiCE) detectors. IEEE Trans Nucl Sci 2001;48(no.4, pt 2):1403–7

    Article  Google Scholar 

  5. Tai YC, Chatziioannou A, Siegel S, et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 2001;46(7):1845–62

    Article  PubMed  Google Scholar 

  6. Tai YC, Ruangma A, Laforest R, Siegel S, Newport DF. Performance evaluation of the microPET (R) Focus: a second generation small animal PET system. J Nucl Med 2003;44(5):159P–160P

    Google Scholar 

  7. Karp JS, Surti S, Daube-Witherspoon ME, et al. Performance of a brain PET camera based on Anger-logic gadolinium oxyorthosilicate detectors. J Nucl Med 2003;44(8):1340–9

    PubMed  Google Scholar 

  8. Bettinardi V, Danna M, Savi A, et al. Performance evaluation of the new whole-body PET/CT scanner: Discovery ST. Eur J Nucl Med Mol Imaging 2004;31(6):867–81

    Article  PubMed  Google Scholar 

  9. Schmand M, Eriksson L, Casey ME, Wienhard K, Flugge G, Nutt R. Advantages using pulse shape discrimination to assign the depth of interaction information (DOI) from a multi layer phoswich detector. IEEE Trans Nucl Sci 1999;46(4)985–90

    Article  Google Scholar 

  10. Seidel J, Vaquero JJ, Green MV. Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 2003;50(5):1347–50

    Article  Google Scholar 

  11. Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964–8

    Article  Google Scholar 

  12. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16(2):145–58

    Article  PubMed  Google Scholar 

  13. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–16

    PubMed  Google Scholar 

  14. Vardi Y, Shepp LA, Kaufman L. A statistical model for positron emission tomography. J Am Stat Assoc 1985;80:8–37

    Google Scholar 

  15. Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans Med Imaging 1989;8:194–202

    Article  Google Scholar 

  16. Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 1982;1:113–22

    Google Scholar 

  17. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9

    Article  Google Scholar 

  18. Rollo FD. Nuclear medicine physics, instrumentation, and agents. St. Louis: Mosby, 1977

  19. Schramm NU, Ebel G, Engeland U, et al. High resolution SPECT using multi-pinhole collimation. IEEE Trans Nucl Sci 2003;51:757–63

    Google Scholar 

  20. Beekman FJ, Vastenbouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579–92

    Article  PubMed  Google Scholar 

  21. Weisenberger AG, Wojcik R, Bradley EL, et al. SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 2003;50(1):74–9

    Article  Google Scholar 

  22. MacDonald LR, Patt BE, Iwanczyk JS et. al. Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 2001;48(3)

  23. Mueller B, O’Connor MK, Blevis I, et al. Evaluation of a small cadmium zinc telluride detector for scintimammography. J Nucl Med 2003;44(4):602–9

    Google Scholar 

  24. Zeng GL, Gagnon D. CdZnTe strip detector SPECT imaging with a slit collimator. Phys Med Biol 2004;49:2257–71

    Article  PubMed  Google Scholar 

  25. Mason WT, ed. Fluorescent and luminescent probes for biological activity. London: Academic Press, 1999

  26. Contag CH, Contag PR, Mullins JI, et al. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 1995;8:593–603

    Article  Google Scholar 

  27. Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000;2:41–52

    Article  PubMed  Google Scholar 

  28. Zhao H, Doyle TC, Coquoz O, et al. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Optics 2005;10(4)

  29. Ishimaru A. Wave propagation and scattering in random media. New York: Academic Press, 1978

  30. Cheong WF, Prahl SA, Welch AJ. A review of the optical properties of biological tissues. IEEE J Quantum Electron 1990;26:2166–85

    Article  Google Scholar 

  31. Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt 2001;6(4):432–40

    Article  PubMed  Google Scholar 

  32. Xenogen Corporation, Alameda, CA http://www.xenogen.com

  33. Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. Med Phys 2004;31(8):2289–99

    Article  PubMed  Google Scholar 

  34. Gu X, Zhang Q, Larcom L, Jiang H. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt Express 2004;12(17):3996–4000

    Article  Google Scholar 

  35. Campbell RE, Tour O, Palmer AE, et al. A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 2002;99:7877–82

    Article  PubMed  Google Scholar 

  36. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001;7:743–8

    Article  PubMed  Google Scholar 

  37. Hawrysz DJ, Sevick-Muraca EM. Developments toward diagnostic breast cancer using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2000;2:388–417

    Article  PubMed  Google Scholar 

  38. Weissleder R, Tung CH, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 1999;17:375–8

    Article  Google Scholar 

  39. Sevick-Muraca EM, Houston JP, Gurfinkel M. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 2002;6:642–50

    Article  PubMed  Google Scholar 

  40. Ntziachristos V, Weissleder R. Experimental three-dimensional fluorescence reconstruction of diffuse meda by use of a normalized born approximation. Opt Lett 2001;26:893–5

    Google Scholar 

  41. Schmidt FEW, Fry ME, Hillman EMC, et al. A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instr 2000;71(1):256–65

    Google Scholar 

  42. Culver JP, Choe R, Holboke MJ, et al. 3d diffuse optical tomography in the plane parallel transmission geometry; evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys 2003;30(2):235–47

    Article  PubMed  Google Scholar 

  43. Yu G, Durduran T, Furuya D, et al. Frequency-domain multiplexing system for in vivo diffuse light measurements of rapid cerebral hemodynamics. Appl Opt 2003;42(16):2931–9

    PubMed  Google Scholar 

  44. Corlu A, Durduran T, Choe R, et al. Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. Opt Lett 2003;28:2339–41

    PubMed  Google Scholar 

  45. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80

    Article  PubMed  Google Scholar 

  46. Hill DLG, Batchelor PG, Holden M, Hawkes D. Medical image registration. Phys Med Biol 2001;46:R1–45

    Article  PubMed  Google Scholar 

  47. Schoder H, Erdi YE, Larson SM, Yeung HW. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 2003;30(10):1419–37

    Google Scholar 

  48. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25(10):2046–53

    Article  PubMed  Google Scholar 

  49. Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol 2002;75:S24–30

    PubMed  Google Scholar 

  50. Forster GJ, Laumann C, Nickel O, et al. SPECT/CT image co-registration in the abdomen with a simple and cost-effective tool. Eur J Nucl Med Mol Imaging 2003;30(1):32–9

    Article  PubMed  Google Scholar 

  51. Keidar Z, Israel O, Krausz Y. SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 2003;XXXIII(30):205–18

    Article  Google Scholar 

  52. Gamma Medica, Inc., Northridge, CA, USA http://www.gammamedica.com

  53. Siemens/CTI Concorde, Knoxville, TN, USA http://www.ctimi.com/ctimi/cti_concorde

  54. Bioscan, Inc., Washington, D.C. http://www.bioscan.com

  55. Peter J, Ruehle H, Stamm V, et al. Development and initial results of a dual-modality SPECT/optical small animal imager. Proc SPIE, European Conference on Biomedical Optics, in press

  56. Alexandrakis G, Rannou FR, Chatziioannou AF. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol 2005;50:4225–41

    Article  PubMed  Google Scholar 

  57. ISE-SRL, Inc., Pisa, Italy http://www.ise-srl.com/YAPPET/yap-doc.htm

  58. Shao Y, Cherry SR, Farahani K, et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42:1965–70

    Article  PubMed  Google Scholar 

  59. Grazioso R, Zhang N, Corbeil J, et al. APD-based PET detector for simultaneous PET/MR imaging. Abstract M06-6, presented at the IEEE Medical Imaging Conference, Puerto Rico, 2005

  60. Louie AY, Meade TJ. Recent advances in MRI: novel contrast agents shed light on in vivo biochemistry. Trends Biochem Sci 2000, 7–11

  61. Leong-Poi H, Christiansen J, Klibanov AL, et al. Non-invasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 2003;107:455–60

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Levin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, C.S. Primer on molecular imaging technology. Eur J Nucl Med Mol Imaging 32 (Suppl 2), S325–S345 (2005). https://doi.org/10.1007/s00259-005-1973-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1973-y

Keywords

Navigation