Skip to main content
Log in

T2 MRI at 3T of cartilage and menisci in patients with hyperuricemia: initial findings

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare and evaluate T2 values of compartmental femorotibial cartilage and subregional menisci in patients with hyperuricemia at 3T.

Materials and methods

Thirty-two subjects were included in this study and subdivided into two subgroups: 15 healthy controls (3 females, 12 males; mean age = 45.3 ± 10.9 years), 17 patients with hyperuricemia (2 females, 15 males; mean age = 44.4 ± 12.7 years). All subjects were assessed on a 3T MR scanner using an 8-channel phased-array knee coil (transmit-receive). Wilcoxon rank sum test and analysis of covariance (ANCOVA) were performed to determine whether there were any statistically significant differences in T2 values of compartmental femorotibial cartilage and subregional menisci between the two subgroups.

Results

Lateral tibial cartilage (48.6 ± 3.5 ms) in healthy subgroup had significantly lower (p < 0.05) T2 values than all subcompartments of femorotibial cartilage in hyperuricemia subgroup. Medial tibial cartilage (56.5 ± 4.3 ms) in hyperuricemia subgroup had significantly higher (p < 0.05) T2 values than all subcompartments of femorotibial cartilage except medial tibial cartilage in healthy subgroup. Medial anterior horn of meniscus (39.4 ± 2.9 ms) in healthy subgroup had significantly lower (p < 0.05) T2 values than all subregional menisci except both medial anterior horn and medial body segment of meniscus in hyperuricemia subgroup.

Conclusion

T2 values in certain compartmental femorotibial cartilage and subregional menisci in patients with hyperuricemia are evidently and abnormally heightened compared with those in healthy subjects, to which special attention should be paid when diagnosing and treating the patients with hyperuricemia in the clinical setting.

Graphical abstract

The LT cartilage had significantly lower T2 values (48.6 ± 3.5 ms) in healthy subgroup compared to all compartmental femorotibial cartilage in cohort with HU. MF cartilage had significantly lower T2 values (51.6 ± 2.9 ms) in healthy subgroup compared to both LF (54.4 ± 4.1 ms) and MT (56.5 ± 4.3 ms) in cohort with HU. MT cartilage had significantly higher T2 values (56.5 ± 4.3 ms) in cohort with HU subgroup compared to LF (52.5 ± 3.0 ms) in healthy subgroup. T2 mapping may be promising and potential sensitive discriminator of understanding and examining the early compositional and structural change in proteoglycan–collagen matrix of human femorotibial cartilage in patients with hyperuricemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roberts J, Burch TA. Osteoarthritis prevalence in adults by age, sex, race, and geographic area. Vital Health Stat. 1966;11(15):1–27.

    Google Scholar 

  2. Vos T, Allen C. Arora M and GBD 2015 Disease and injury incidence and prevalence Collaborators (630), Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study. Lancet. 2015;388(10053):1545–602.

    Article  Google Scholar 

  3. Wang L, Chang G, Bencardino J, Babb JS, Rokito A, Jazrawi L, et al. T1rho MRI at 3T of menisci in patients with acute anterior cruciate ligament (ACL) injury. J Magn Reson Imaging. 2015;41(2):544–9.

    Article  PubMed  Google Scholar 

  4. Amano K, Pedoia V, Su F, Souza RB, Li X, Ma CB. Persistent biomechanical alterations after ACL reconstruction are associated with early cartilage matrix changes detected by quantitative MR. Orthop J Sports Med. 2016;4(4):2325967116644421.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang L, Vieira RL, Rybak LD, Babb JS, Chang G, Krasnokutsky S, et al. Relationship between knee alignment and T1ρ values of articular cartilage and menisci in patients with knee osteoarthritis. Eur J Radiol. 2013;82(11):1946–52.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gong J, Pedoia V, Facchetti L, Link TM, Ma CB, Li X. Bone marrow edema-like lesions (BMELs) are associated with higher T1ρ and T2 values of cartilage in anterior cruciate ligament (ACL)-reconstructed knees: a longitudinal study. Quant Imaging Med Surg. 2016;6(6):661–70.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang L, Chang G, Xu J, Vieira RL, Krasnokutsky S, Abramson S, et al. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T. Eur J Radiol. 2012;81(9):2329–36.

    Article  PubMed  Google Scholar 

  8. Rauscher I, Stahl R, Cheng J, Li X, Huber MB, Luke A, et al. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology. 2008;249(2):591–600.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dijkgraaf LC, de Bont LG, Boering G, Liem RS. The structure, biochemistry, and metabolism of osteoarthritic cartilage: a review of the literature. J Oral Maxillofac Surg. 1995;53(10):1182–92.

    Article  CAS  PubMed  Google Scholar 

  10. Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009;11(3):227–35.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthr Cartilage. 2013;21(10):1474–84.

    Article  CAS  Google Scholar 

  12. Roddy E, Zhang W, Doherty M. Are joints affected by gout also affected by osteoarthritis? Ann Rheum Dis. 2007;66(10):1374–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bevis M, Marshall M, Rathod T, Roddy E. The association between gout and radiographic hand, knee and foot osteoarthritis: a cross-sectional study. BMC Musculoskelet Disord. 2016;17:169.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mosher TJ, Zhang Z, Reddy R, Boudhar S, Milestone BN, Morrison WB, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011;258(3):832–42.

    Article  PubMed  Google Scholar 

  15. Takao S, Nguyen TB, Yu HJ. T1rho and T2 relaxation times of the normal adult knee meniscus at 3T: analysis of zonal differences. BMC Musculoskelet Disord. 2017;18(1):202.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Herwing J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43:635–40.

    Article  Google Scholar 

  17. Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S, et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med. 2003;139(5 Pt 1):330–6.

    Article  PubMed  Google Scholar 

  18. Brouwer GM, van Tol AW, Bergink AP, Belo JN, Bernsen RM, Reijman M, et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 2007;56(4):1204–11.

    Article  CAS  PubMed  Google Scholar 

  19. Ding X, Zeng C, Wei J, Li H, Yang T, Zhang Y, et al. The associations of serum uric acid level and hyperuricemia with knee osteoarthritis. Rheumatol Int. 2016;36(4):567–73.

    Article  CAS  PubMed  Google Scholar 

  20. Kuo CF, Chou IJ, See LC, Chen JS, Yu KH, Luo SF, et al. Urate-lowering treatment and risk of total joint replacement in patients with gout. Rheumatology (Oxford). 2018;57(12):2129–39.

    Article  Google Scholar 

  21. Neogi T, Krasnokutsky S, Pillinger MH. Urate and osteoarthritis: evidence for a reciprocal relationship. Joint Bone Spine. 2019;86(5):576–82.

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Benjamin MC, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthr Cartilage. 2007;15(7):789–97.

    Article  CAS  Google Scholar 

  23. Liebl H, Joseph G, Nevitt MC, Singh N, Heilmeier U, Subburaj K, et al. Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis. 2015;74(7):1353–9.

    Article  PubMed  Google Scholar 

  24. Muraki S, Akune T, En-Yo Y, Yoshida M, Suzuki T, Yoshida H, et al. Joint space narrowing, body mass index, and knee pain: the ROAD study (OAC1839R1). Osteoarthr Cartilage. 2015;23(6):874–81.

    Article  CAS  Google Scholar 

  25. Tsai PH, Chou MC, Lee HS, Lee CH, Chung HW, Chang YC, et al. MR T2 values of the knee menisci in the healthy young population: zonal and sex differences. Osteoarthr Cartilage. 2009;17(8):988–94.

    Article  Google Scholar 

  26. Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartilage. 2015;23(10):1639–53.

    Article  CAS  Google Scholar 

  27. Smith GN, Mickler EA, Albrecht ME, Myers SL, Brandt KD. Severity of medial meniscus damage in the canine knee after anterior cruciate ligament transection. Osteoarthr Cartilage. 2002;10(4):321–6.

    Article  CAS  Google Scholar 

  28. Hirose J, Nishioka H, Nakamura E, Oniki Y, Yamashita Y, Mizuta H. T1rho and T2 mapping of the proximal tibiofibular joint in relation to aging and cartilage degeneration. Eur J Radiol. 2012;81:2776–82.

    Article  PubMed  Google Scholar 

  29. Friedrich KM, Shepard T, de Oliveira VS, Wang L, Babb JS, Schweitzer M, et al. T2 Measurements of cartilage in osteoarthritis patients with meniscal tears. Am J Roentgenol. 2009;193(5):W411–5.

    Article  Google Scholar 

  30. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartilage. 2004;12(3):177–90.

    Article  CAS  Google Scholar 

  31. Eckstein F, Ateshian G, Burgkart R, Burstein D, Cicuttini F, Dardzinski B, et al. Proposal for a nomenclature for Magnetic Resonance Imaging based measures of articular cartilage in osteoarthritis. Osteoarthr Cartilage. 2006;14:974–83.

    Article  CAS  Google Scholar 

  32. Zhu J, Hu N, Liang X, Li X, Guan J, Wang Y, et al. T2 mapping of cartilage and menisci at 3T in healthy subjects with knee malalignment: initial experience. Skeletal Radiol. 2019;48(5):753–63.

    Article  PubMed  Google Scholar 

  33. Vitorino C, Ribeiro M, Carolino E, Costa JP, Ferreira A. (2019) Evaluation of knee joint cartilage through T2 mapping technique by magnetic resonance. In Proceedings of the IEEE; April.

  34. Wang A, Pedoia V, Su F, Abramson E, Kretzschmar M, Nardo L, et al. MR T1ρ and T2 of meniscus after acute anterior cruciate ligament injuries. Osteoarthr Cartilage. 2016;24(4):631–9.

    Article  Google Scholar 

  35. Eijgenraam SM, Bovendeert FAT, Verschueren J, van Tiel J, Bastiaansen-Jenniskens YM, Wesdorp MA, et al. T2 mapping of the meniscus is a biomarker for early osteoarthritis. Eur Radiol. 2019;29(10):5664–72.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Seedhom BB, Dowson D, Wright V. Proceedings: functions of the menisci. A preliminary study Ann Rheum Dis. 1974;33(1):111.

    Article  CAS  PubMed  Google Scholar 

  37. Shoemaker SC, Markolf KL. The role of meniscus in the anterior-posterior stability of the loaded anterior cruciate-deficient knee Effects of partial versus total excision. J Bone Joint Surg Am. 1986;68(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  38. Macconaill MA. The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J Anat. 1932;66:210–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nebelung S, Tingart M, Pufe T, Kuhl C, Jahr H, Truhn D. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration. Skeletal Radiol. 2016;45(12):1649–60.

    Article  PubMed  Google Scholar 

  40. Lohmander LS, Englund PM, LDahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35:1756–69.

    Article  PubMed  Google Scholar 

  41. Son M, Goodman SB, Chen W, Hargreaves BA, Gold GE, Levenston ME. Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition. Osteoarthr Cartilage. 2013;21(6):796–805.

    Article  CAS  Google Scholar 

  42. Friedrich KM, Shepard T, Chang G, Wang L, Babb JS, Schweitzer M, et al. Does joint alignment affect the T2 values of cartilage in patients with knee osteoarthritis? Eur Radiol. 2010;20:1532–8.

    Article  PubMed  Google Scholar 

  43. Wang L, Regatte RR (2014) Quantitative mapping of human cartilage at 3.0T: parallel changes in T2, T1ρ, and dGEMRIC. Acad Radiol 21 (4): 463–71.

  44. Surowiec RK, Lucas EP, Ho CP. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1385–95.

    Article  PubMed  Google Scholar 

  45. Balamoody S, Williams TG, Wolstenholme C, Waterton JC, Bowes M, Hodgson R, et al. Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study. Skeletal Radiol. 2013;42(4):511–20.

    Article  PubMed  Google Scholar 

  46. Pai A, Li X, Majumdar S. A comparative study at 3T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging. 2008;26(9):1215–20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Matzat SJ, McWalter EJ, Kogan F, Chen W, Gold GE. T2 Relaxation time quantitation differs between pulse sequences in articular cartilage. J Magn Reson Imaging. 2015;42(1):105–13.

    Article  PubMed  Google Scholar 

  48. Kim J, Mamoto K, Lartey R, Xu K, Nakamura K, Shin W, et al. Multi-vendor multi-site T1ρ and T2 quantification of knee cartilage. Osteoarthr Cartilage. 2020;28(12):1539–50.

    Article  CAS  Google Scholar 

  49. MacKay JW, Roemer FW, Kogan F. Standardized multi-vendor compositional MRI of knee cartilage: a key step towards clinical translation? Osteoarthr Cartilage. 2020;28(12):1497–500.

    Article  CAS  Google Scholar 

  50. Takashima H, Takebayashi T, Yoshimoto M, Terashima Y, Tsuda H, Ida K, Yamashita T. Correlation between T2 relaxation time and intervertebral disk degeneration. Skeletal Radiol. 2012;41(2):163–7.

    Article  PubMed  Google Scholar 

  51. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17(3):358–64.

    Article  PubMed  Google Scholar 

  52. Wang L, Schweitzer ME, Padua A, Regatte RR. Rapid 3D–T1 mapping of cartilage with variable flip angle and parallel imaging at 3.0T. J Magn Reson Imaging. 2008;27(1):154–61.

    Article  PubMed  Google Scholar 

  53. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. Am J Roentgenol. 2001;177(3):665–9.

    Article  CAS  Google Scholar 

  54. Wang L, Regatte RR. Investigation of regional influence of magic-angle effect on T2 in human articular cartilage with osteoarthritis at 3T. Acad Radiol. 2015;22(1):87–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Xiaoyun Liang from Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia, is in particular thanked for discussion and help in statistics analyses and processing. Zhen Jiang, M.D., Junkang Shen, M.D., and Caiyuan Zhang, MSc from Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China, are acknowledged for full support to this research work. The authors are very much indebted to all the recruited volunteers participating in this study.

Funding

This study is funded by the Scientific Research Foundation for the Returned Overseas Chinese Scholars from the Ministry of Education (K512801315), China, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China, the Suzhou Science and Technology Development Project (SZS201721), China, and the Suzhou Municipal Science and Technology Bureau Project (SYS2018058), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligong Wang.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• T2 values in certain compartmental femorotibial cartilage and subregional menisci in patients with asymptomatic hyperuricemia are evidently and abnormally elevated compared with those in healthy subjects

• T2 mapping may be promising and potential sensitive discriminator of understanding and examining the early compositional and structural change of human femorotibial cartilage and menisci in patients with asymptomatic hyperuricemia

• Patients with asymptomatic hyperuricemia may have early elevated water content in both femorotibial cartilage and menisci, which should be in particular paid attention to when diagnosing and treating the patients with hyperuricemia in the absence of established gout in clinical settings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, N., Zhu, J., Liang, X. et al. T2 MRI at 3T of cartilage and menisci in patients with hyperuricemia: initial findings. Skeletal Radiol 51, 607–618 (2022). https://doi.org/10.1007/s00256-021-03861-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03861-1

Keywords

Navigation