Skip to main content
Log in

Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Early diagnosis of cartilage degeneration and longitudinal tracking of cartilage health including repair following surgical intervention would benefit from the ability to detect and monitor changes of the articular cartilage non-invasively and before gross morphological alterations appear.

Methods

Quantitative MR imaging has shown promising results with various imaging biomarkers such as T2 mapping, T1 rho and dGEMRIC demonstrating sensitivity in the detection of biochemical alterations within tissues of interest. However, acquiring accurate and clinically valuable quantitative data has proven challenging, and the reproducibility of the quantitative mapping technique and its values are essential. Although T2 mapping has been the focus in this discussion, all quantitative mapping techniques are subject to the same issues including variability in the imaging protocol, unloading and exercise, analysis, scanner and coil, calculation methods, and segmentation and registration concerns.

Results

The causes for variability between time points longitudinally in a patient, among patients, and among centres need to be understood further and the issues addressed.

Conclusions

The potential clinical applications of quantitative mapping are vast, but, before the clinical community can take full advantage of this tool, it must be automated, standardized, validated, and have proven reproducibility prior to its implementation into the standard clinical care routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Apprich S, Welsch GH, Mamisch TC, Szomolanyi P, Mayerhoefer M, Pinker K, Trattnig S (2010) Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 Tesla. Osteoarthr Cartil 18(9):1211–1217

    Article  CAS  PubMed  Google Scholar 

  2. Apprich S, Mamisch TC, Welsch GH, Stelzeneder D, Albers C, Totzke U, Trattnig S (2011) Quantitative T2 mapping of the patella at 3.0T is sensitive to early cartilage degeneration, but also to loading of the knee. Eur J Radiol 81(4):e438–e443

    Article  PubMed  Google Scholar 

  3. Apprich S, Mamisch TC, Welsch GH, Stelzeneder D, Albers C, Totzke U, Trattnig S (2012) Quantitative T2 mapping of the patella at 3.0T is sensitive to early cartilage degeneration, but also to loading of the knee. Eur J Radiol 81(4):e438–e443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bedi A, Kelly N, Baad M, Fox AJ, Ma Y, Warren RF, Maher SA (2012) Dynamic contact mechanics of radial tears of the lateral meniscus: implications for treatment. Arthroscopy 28(3):372–381

    Article  PubMed  Google Scholar 

  5. Campbell K, Boykin R, Wijdicks C, Erik Giphart J, LaPrade R, Philippon M (2012) Treatment of a hip capsular injury in a professional soccer player with platelet-rich plasma and bone marrow aspirate concentrate therapy. Knee Surg Sports Traumatol Arthrosc 21(7):1684–1688

    Article  PubMed  Google Scholar 

  6. Carballido-Gamio J, Link TM, Li X, Han ET, Krug R, Ries MD, Majumdar S (2008) Feasibility and reproducibility of relaxometry, morphometric, and geometrical measurements of the hip joint with magnetic resonance imaging at 3T. J Magn Reson Imaging 28(1):227–235

    Article  PubMed  Google Scholar 

  7. Carballido-Gamio J, Stahl R, Blumenkrantz G, Romero A, Majumdar S, Link TM (2009) Spatial analysis of magnetic resonance T1rho and T2 relaxation times improves classification between subjects with and without osteoarthritis. Med Phys 36(9):4059–4067

    Article  PubMed Central  PubMed  Google Scholar 

  8. Carballido-Gamio J, Joseph GB, Lynch JA, Link TM, Majumdar S (2011) Longitudinal analysis of MRI T2 knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative: a texture approach. Magn Reson Med 65(4):1184–1194

    Article  PubMed  Google Scholar 

  9. Chang G, Wiggins GC, Xia D, Lattanzi R, Madelin G, Raya JG, Finnerty M, Fujita H, Recht MP, Regatte RR (2011) Comparison of a 28-channel receive array coil and quadrature volume coil for morphologic imaging and T2 mapping of knee cartilage at 7T. J Magn Reson Imaging 35(2):441–448

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chew KT, Lew HL, Date E, Fredericson M (2007) Current evidence and clinical applications of therapeutic knee braces. Am J Phys Med Rehabil 86(8):678–686

    Article  PubMed  Google Scholar 

  11. Choi JA, Gold GE (2011) MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am 19(2):249–282

    Article  PubMed Central  PubMed  Google Scholar 

  12. Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F, Baum T, Mosher TJ, Carrino JA, Guermazi A (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31(1):37–61

    Article  PubMed  Google Scholar 

  13. Domayer SE, Kutscha-Lissberg F, Welsch G, Dorotka R, Nehrer S, Gabler C, Mamisch TC, Trattnig S (2008) T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome—preliminary results. Osteoarthritis Cartilage 16(8):903–908

    Article  CAS  PubMed  Google Scholar 

  14. Domayer SE, Apprich S, Stelzeneder D, Hirschfeld C, Sokolowski M, Kronnerwetter C, Chiari C, Windhager R, Trattnig S (2012) Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation. Osteoarthr Cartil 20(8):829–836

    Article  CAS  PubMed  Google Scholar 

  15. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232(2):592–598

    Article  PubMed  Google Scholar 

  16. Eckstein F, Winzheimer M, Hohe J, Englmeier KH, Reiser M (2001) Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthritis Cartilage 9(2):101–111

    Article  CAS  PubMed  Google Scholar 

  17. Friedrich KM, Reiter G, Kaiser B, Mayerhofer M, Deimling M, Jellus V, Horger W, Trattnig S, Schweitzer M, Salomonowitz E (2011) High-resolution cartilage imaging of the knee at 3T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol 78(3):398–405

    Article  PubMed  Google Scholar 

  18. Fripp J, Crozier S, Warfield SK, Ourselin S (2010) Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. Med Imaging IEEE Trans 29(1):55–64

    Article  Google Scholar 

  19. Galea A, Giuffre B, Dimmick S, Coolican MRJ, Parker DA (2009) The accuracy of magnetic resonance imaging scanning and its influence on management decisions in knee surgery. Arthroscopy 25(5):473–480

    Article  PubMed  Google Scholar 

  20. Glaser C, Mendlik T, Dinges J, Weber J, Stahl R, Trumm C, Reiser M (2006) Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 56(3):527–534

    Article  CAS  PubMed  Google Scholar 

  21. Goto H, Iwama Y, Fujii M, Aoyama N, Kubo S, Kuroda R, Ohno Y, Sugimura K (2012) A preliminary study of the T1rho values of normal knee cartilage using 3T-MRI. Eur J Radiol 81(7):e796–803

    Google Scholar 

  22. Guermazi A, Roemer F, Burstein D, Hayashi D (2011) Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis. Arthritis Res Ther 13(6):247

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hannila I, Susanna Räinä S, Tervonen O, Ojala R, Nieminen MT (2009) Topographical variation of T2 relaxation time in the young adult knee cartilage at 1.5T. Osteoarthr Cartil 17(12):1570–1575

    Article  CAS  PubMed  Google Scholar 

  24. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Biomed Eng SMC 3(6):610–621

    Google Scholar 

  25. Hennig J (1991) Echoes—how to generate, recognize, use or avoid them in MR-imaging sequences. Concepts Magn Reson 3:125–142

    Article  Google Scholar 

  26. Hovis KK, Stehling C, Souza RB, Haughom BD, Baum T, Nevitt M, McCulloch C, Lynch JA, Link TM (2011) Physical activity is associated with magnetic resonance imaging–based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum 63(8):2248–2256

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hovis JJ, Alizai H, Tham SC, Souza RB, Nevitt MC, McCulloch CE, Link TM (2012) Non-traumatic anterior cruciate ligament abnormalities and their relationship to OA using morphological grading and cartilage T2 relaxation times data from the Osteoarthritis Initiative (OAI). Skelet Radiol 41(11):1435–1443

    Google Scholar 

  28. Joseph G, Baum T, Carballido-Gamio J, Nardo L, Virayavanich W, Alizai H, Lynch J, McCulloch C, Majumdar S, Link T (2011) Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls—data from the osteoarthritis initiative. Arthritis Res Ther 13(5):R153

    Article  PubMed Central  PubMed  Google Scholar 

  29. Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, Lynch JA, Nevitt MC, McCulloch CE, Majumdar S, Link TM (2012) Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years—data from the Osteoarthritis Initiative. Osteoarthr Cartil 20(7):727–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Juras V, Zbyn S, Szomolanyi P, Trattnig S (2010) Regression error estimation significantly improves the region-of-interest statistics of noisy MR images. Med Phys 37(6):2813–2821

    Article  PubMed  Google Scholar 

  31. Kai B, Mann SA, King C, Forster BB (2011) Integrity of articular cartilage on T2 mapping association with meniscal signal change. Eur J Radiol 79(3):421–427

    Google Scholar 

  32. Koff MF, Amrami KK, Felmlee JP, Kaufman KR (2008) Bias of cartilage T2 values related to method of calculation. Magn Reson Imaging 26(9):1236–1243

    Article  PubMed Central  PubMed  Google Scholar 

  33. Krause FG, Klammer G, Benneker LM, Werlen S, Mamisch TC, Weber M (2010) Biochemical T2* MR quantification of ankle arthrosis in pes cavovarus. J Orthop Res 28(12):1562–1568

    Article  CAS  PubMed  Google Scholar 

  34. Lattanzi R, Petchprapa C, Glaser C, Dunham K, Mikheev AV, Krigel A, Mamisch TC, Kim YJ, Rusinek H, Recht M (2012) A new method to analyze dGEMRIC measurements in femoroacetabular impingement: preliminary validation against arthroscopic findings. Osteoarthr Cartil 20(10):1127–1133

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, Carballido-Gamio J, Ries M, Majumdar S (2007) In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthr Cartil 15(7):789–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Li X, Pai A, Blumenkrantz G, Carballido-Gamio J, Link T, Ma B, Ries M, Majumdar S (2009) Spatial distribution and relationship of T1ρ and T2 relaxation times in knee cartilage with osteoarthritis. Magn Reson Med 61(6):1310–1318

    Article  PubMed Central  PubMed  Google Scholar 

  37. Liess C, Lüsse S, Karger N, Heller M, Glüer CC (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil 10(12):907–913

    Article  CAS  PubMed  Google Scholar 

  38. Maier CF, Tan SG, Hariharan H, Potter HG (2003) T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging 17(3):358–364

    Article  PubMed  Google Scholar 

  39. Maizlin ZV, Clement JJ, Patola WB, Fenton DM, Gillies JH, Vos PM, Jacobson JA (2009) T2 mapping of articular cartilage of glenohumeral joint with routine MRI correlation—initial experience. HSS J 5(1):61–66

    Article  PubMed Central  PubMed  Google Scholar 

  40. Mamisch TC, Trattnig S, Quirbach S, Marlovits S, White LM, Welsch GH (2010) Quantitative T2 mapping of knee cartilage: differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading—initial results1. Radiology 254(3):818–826

    Article  PubMed  Google Scholar 

  41. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8(4):355–368

    Article  PubMed  Google Scholar 

  42. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB (2001) MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 177(3):665–669

    Article  CAS  PubMed  Google Scholar 

  43. Mosher TJ, Liu Y, Torok CM (2010) Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarthritis Cartilage 18(3):358–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mosher TJ, Zhang Z, Reddy R, Boudhar S, Milestone BN, Morrison WB, Kwoh CK, Eckstein F, Witschey WR, Borthakur A (2011) Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology 258(3):832–842

    Article  PubMed  Google Scholar 

  45. Nordmeyer-Massner JA, Wyss M, Andreisek G, Pruessmann KP, Hodler J (2011) In vitro and in vivo comparison of wrist MR imaging at 3.0 and 7.0 tesla using a gradient echo sequence and identical eight-channel coil array designs. J Magn Reson Imaging 33(3):661–667

    Article  PubMed  Google Scholar 

  46. Oneto J, Ellermann J, LaPrade R (2010) Longitudinal evaluation of cartilage repair tissue after microfracture using T2-mapping: a case report with arthroscopic and MRI correlation. Knee Surg Sports Traumatol Arthrosc 18(11):1545–1550

    Article  PubMed  Google Scholar 

  47. Pai A, Li X, Majumdar S (2008) A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging 26(9):1215–1220

    Article  PubMed Central  PubMed  Google Scholar 

  48. Pan J, Pialat JB, Joseph T, Kuo D, Joseph GB, Nevitt MC, Link TM (2011) Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative. Radiol 261(2):507–515

    Google Scholar 

  49. Prasloski T, Mädler B, Xiang Q-S, MacKay A, Jones C (2012) Applications of stimulated echo correction to multicomponent T2 analysis. Magn Reson Imaging 67(6):1803–1814

    Google Scholar 

  50. Prisk VR, Imhauser CW, O’Loughlin PF, Kennedy JG (2010) Lateral ligament repair and reconstruction restore neither contact mechanics of the ankle joint nor motion patterns of the hindfoot. J Bone Joint Surg Am 92(14):2375–2386

    Article  PubMed Central  PubMed  Google Scholar 

  51. Raya JG, Dietrich O, Horng A, Weber J, Reiser MF, Glaser C (2010) T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR. Magn Reson Imaging 63(1):181–193

    Google Scholar 

  52. Rodriguez-Merchan EC (2013) Regeneration of articular cartilage of the knee. Rheumatol Int 33(4):837–845

    Article  CAS  PubMed  Google Scholar 

  53. Schneider E, Nessaiver M (2013) The Osteoarthritis Initiative (OAI) magnetic resonance imaging quality assurance update. Osteoarthr Cartil 21(1):110–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Slauterbeck JR, Kousa P, Clifton BC, Naud S, Tourville TW, Johnson RJ, Beynnon BD (2009) Geographic mapping of meniscus and cartilage lesions associated with anterior cruciate ligament injuries. J Bone Joint Surg Am 91(9):2094–2103

    Article  PubMed  Google Scholar 

  55. Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, Schmithorst VJ, Smith MB (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14(1):50–55

    Article  PubMed  Google Scholar 

  56. Stehling C, Baum T, Mueller-Hoecker C, Liebl H, Carballido-Gamio J, Joseph GB, Majumdar S, Link TM (2011) A novel fast knee cartilage segmentation technique for T2 measurements at MR imaging—data from the Osteoarthritis Initiative. Osteoarthr Cartil 19(8):984–989

    Article  CAS  PubMed  Google Scholar 

  57. Trattnig S, Zbyn S, Schmitt B, Friedrich K, Juras V, Szomolanyi P, Bogner W (2012) Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol 22(11):2338–2346

    Article  PubMed  Google Scholar 

  58. Wang YX, Griffith JF, Ahuja AT (2010) Non-invasive MRI assessment of the articular cartilage in clinical studies and experimental settings. World J Radiol 2(1):44–54

    Article  PubMed Central  PubMed  Google Scholar 

  59. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, White LM, Trattnig S (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 247(1):154–161

    Article  PubMed  Google Scholar 

  60. Welsch G, Mamisch T, Quirbach S, Zak L, Marlovits S, Trattnig S (2009) Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19(5):1253–1262

    Article  PubMed  Google Scholar 

  61. Welsch GH, Scheffler K, Mamisch TC, Hughes T, Millington S, Deimling M, Trattnig S (2009) Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla. Magn Reson Med 62(2):544–549

    Article  PubMed  Google Scholar 

  62. Welsch G, Trattnig S, Hughes T, Quirbach S, Olk A, Blanke M, Marlovits S, Mamisch T (2010) T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI. Eur Radiol 20(6):1515–1523

    Article  PubMed  Google Scholar 

  63. Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, Marlovits S, Trattnig S (2010) Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping. Am J Sports Med 38(5):934–942

    Article  PubMed  Google Scholar 

  64. Welsch GH, Mamisch TC, Zak L, Mauerer A, Apprich S, Stelzeneder D, Marlovits S, Trattnig S (2011) Morphological and biochemical T2 evaluation of cartilage repair tissue based on a hybrid double echo at steady state (DESS-T2d) approach. J Magn Reson Imaging 34(4):895–903

    Article  PubMed  Google Scholar 

  65. White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241(2):407–414

    Article  PubMed  Google Scholar 

  66. Xu J, Xie G, Di Y, Bai M, Zhao X (2011) Value of T2-mapping and DWI in the diagnosis of early knee cartilage injury. J Radiol Case Rep 5(2):13–18

    Google Scholar 

  67. Yamamoto S, Watanabe A, Nakamura J, Ohtori S, Harada Y, Kishida S, Wada Y, Takahashi K (2011) Quantitative T2 mapping of femoral head cartilage in systemic lupus erythematosus patients with noncollapsed osteonecrosis of the femoral head associated with corticosteroid therapy. J Magn Reson Imaging 34(5):1151–1158

    Article  PubMed  Google Scholar 

  68. Zarins ZA, Bolbos RI, Pialat JB, Link TM, Li X, Souza RB, Majumdar S (2010) Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis. Osteoarthr Cartil 18(11):1408–1416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The Steadman-Philippon Research Institute is a 501(c)(3) non-profit institution supported financially by private donations and corporate support from the following entities: Smith and Nephew Endoscopy, Inc., Arthrex, Inc., Siemens Medical Solutions USA, Inc., ConMed Linvatec, Inc., Össur Americas, Inc., Small Bone Innovations, Inc., Opedix, Inc., Evidence Based Apparel, and Sonoma Orthopedics, Inc.

Conflict of interest

The authors report no conflict of interest in regard to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surowiec, R.K., Lucas, E.P. & Ho, C.P. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc 22, 1385–1395 (2014). https://doi.org/10.1007/s00167-013-2714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2714-6

Keywords

Navigation