Skip to main content
Log in

Overview of a bioremediation tool: organophosphorus hydrolase and its significant application in the food, environmental, and therapy fields

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the past decades, the organophosphorus compounds had been widely used in the environment and food industries as pesticides. Owing to the life-threatening and long-lasting problems of organophosphorus insecticide (OPs), an effective detection and removal of OPs have garnered growing attention both in the scientific and practical fields in recent years. Bacterial organophosphorus hydrolases (OPHs) have been extensively studied due to their high specific activity against OPs. OPH could efficiently hydrolyze a broad range of substrates both including the OP pesticides and some nerve agents, suggesting a great potential for the remediation of OPs. In this review, the microbial identification, molecular modification, and practical application of OPHs were comprehensively discussed.

Key points

Microbial OPH is a significant bioremediation tool against OPs.

Identification and molecular modification of OPH was discussed in detail.

The applications of OPH in food, environmental, and therapy fields are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn J-H, Lee S-A, Kim S-J, You J, Han B-H, Weon H-Y, Lee S-W (2018) Biodegradation of organophosphorus insecticides with P-S bonds by two Sphingobium sp strains. Int Biodeterior Biodegrad 132:59–65

    Article  CAS  Google Scholar 

  • Ali D, Ali H, Alifiri S, Alkahtani S, Alkahtane AA, Huasain SA (2018) Detection of oxidative stress and DNA damage in freshwater snail Lymnea leuteola exposed to profenofos. Front Environ Sci Eng 12(5):1–7

    Article  CAS  Google Scholar 

  • Bai YP, Luo XJ, Zhao YL, Li CX, Xu DS, Xu JH (2017) Efficient degradation of malathion in the presence of detergents using an engineered organophosphorus hydrolase highly expressed by Pichia pastoris without methanol induction. J Agric Food Chem 65(41):9094–9100

    Article  CAS  PubMed  Google Scholar 

  • Baker PJ, Montclare JK (2011) Enhanced refoldability and thermoactivity of fluorinated phosphotriesterase. ChemBioChem 12(12):1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Barman DN, Haque MA, Islam SM, Yun HD, Kim MK (2014) Cloning and expression of ophB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide chlorpyrifos. Ecotoxicol Environ Saf 108:135–141

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Shim H, Raushel FM, Holden HM (2001) High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry 40(9):2712–2722

    Article  CAS  PubMed  Google Scholar 

  • Bigley AN, Raushel FM (2019) The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. Chem Biol Interact 308:80–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigley AN, Xu C, Henderson TJ, Harvey SP, Raushel FM (2019) The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. J Am Chem Soc 308:80–88

    CAS  Google Scholar 

  • Beste A, Taylor DE, Shih TM, Thomas TP (2018) Mechanisms of acetylcholinesterase protection against sarin and soman by adenosine A1 receptor agonist N6-cyclopentyladenosine. Comput Biol Chem 75:74–81

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Luo X-J, Chen Q, Pan J, Zhou J, Xu J-H (2015) Marked enhancement of Acinetobacter sp. organophosphorus hydrolase activity by a single residue substitution Ile211Ala. Bioresour Bioprocess 2(1):1–8

    Article  Google Scholar 

  • Cheng T-C, DeFrank JJ, Rastogi VK (1999) Alteromonas prolidase for organophosphorus G-agent decontamination. Chem Biol Int 119–120:455–462

    Article  Google Scholar 

  • Chen-Goodspeed M, Sogorb MA, Wu F, Hong SB, Raushel FM (2001) Structural determinants of the substrate and stereochemical specificity of phosphotriesterase. Biochemistry 40:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Chi M-C, Liao T-Y, Lin M-G, Lin L-L, Wang T-F (2020) Expression and physicochemical characterization of an N-terminal polyhistidine-tagged phosphotriesterase from the soil bacterium Brevundimonas diminuta. Biocatal Agric Biotechnol 29:101811–101822

    Article  Google Scholar 

  • Chu XY, Tian J, Wu NF, Fan YL (2010) An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2. Appl Microbiol Biotechnol 88(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Dawson RM, Pantelidis S, Rose HR, Kotsonis SE (2008) Degradation of nerve agents by an organophosphate-degrading agent (OpdA). J Hazard Mater 157:308–314

    Article  CAS  PubMed  Google Scholar 

  • DeFrank JJ, Cheng TC (1991) Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J Bacteriol 173:1938–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • diSioudi B, Grimsley JK, Lai K, Wild JR (1999) Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity. Biochemistry 38(10):2866–2872

    Article  CAS  PubMed  Google Scholar 

  • Donaldson D, Kiely T, Grube A (1997) Pesticide’s industry sales and usage 1998–1999 market estimates. US Environmental Protection Agency; Washington (DC): Report No. EPA-733-R-02-OOI. Available from: http://www.epa.gov/oppbead/pesticides/99pestsales/market-estimates.pdf

  • Dong Y-J, Bartlam M, Sun L, Zhou Y-F, Zhang Z-P, Zhang C-G, Rao Z, Zhang X-E (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663

    Article  CAS  PubMed  Google Scholar 

  • Eddleston M, Clutton RE, Taylor M, Thompson A, Worek F, John H, Thiermann H, Scott C (2020) Efficacy of an organophosphorus hydrolase enzyme (OpdA) in human serum and minipig models of organophosphorus insecticide poisoning. Clin Toxicol (phila) 58(5):397–405

    Article  CAS  Google Scholar 

  • El-Moghazy AY, Soliman EA, Ibrahim HZ, Marty JL, Istamboulie G, Noguer T (2016) Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil. Talanta 155:258–264

    Article  CAS  PubMed  Google Scholar 

  • Ely F, Foo JL, Jackson CJ, Gahan LR, Ollis D, Schenk G (2007) Enzymatic bioremediation: organophosphate degradation by binuclear metallo-hydrolases. Curr Top Biochem Res 9:63–78

    CAS  Google Scholar 

  • Ely F, Hadler Kieran S, Gahan Lawrence R, Guddat Luke W, Ollis David L, Schenk G (2010) The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis. Biochemical Journal 432:565–573

    Article  CAS  PubMed  Google Scholar 

  • Ely F, Hadler KS, Mitić N, Gahan LR, Ollis DL, Plugis NM, Russo MT, Labrrabee JA, Schenk G (2011) Electronic and geometric structures of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA). J Biol Inorg Chem 16:777–787

    Article  CAS  PubMed  Google Scholar 

  • Eibes G, Arca-Ramos A, Feijoo G, Lema JM, Moreira MT (2015) Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Appl Microbiol Biotechnol 99(21):8815–8829

    Article  CAS  PubMed  Google Scholar 

  • Falahati-Pour SK, Lotfi AS, Ahmadian G, Baghizadeh A, Behroozi R, Haghighi F (2016) High-level extracellular secretion of organophosphorous hydrolase of Flavobacterium sp. In Escherichia coli BL21(DE3) pLysS. Biotechnol Appl Biochem 63(6):870–876

    Article  CAS  PubMed  Google Scholar 

  • Farnoosh G, Khajeh K, Latifi AM, Aghamollaei H (2016) Engineering and introduction of de novo disulphide bridges in organophosphorus hydrolase enzyme for thermostability improvement. J Biosci 41(4):577–588

    Article  CAS  PubMed  Google Scholar 

  • Farnoosh G, Khajeh K, Mohammadi M, Hassanpour K, Latifi AM, Aghamollaei H (2020) Catalytic and structural effects of flexible loop deletion in organophosphorus hydrolase enzyme: a thermostability improvement mechanism. J Biosci 45(1):1–10

    Article  Google Scholar 

  • Feng S, Hao Ngo H, Guo W, Woong Chang S, Duc Nguyen D, Cheng D, Varjani S, Lei Z, Liu Y (2021) Roles and applications of enzymes for resistant pollutants removal in wastewater treatment. Bioresour Technol 335:125278–125289

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith, M., Aggarwal, N., Ashani, Y., Jubran, H., Greisen, P.J., Ovchinnikov, S., Leader, H., Baker, D., Sussman, J.L., Goldenzweig, A., Fleishman, S.J., Tawfik, D.S., 2017. Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Eng., Des. Sel. 30(4), 333–345.

  • Goldsmith M, Eckstein S, Ashani Y, Greisen P Jr, Leader H, Sussman JL, Aggarwal N, Ovchinnikov S, Tawfik DS, Baker D, Thiermann H, Worek F (2016) Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro. Arch Toxicol 90(11):2711–2724

    Article  CAS  PubMed  Google Scholar 

  • Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P, Ashani Y, Dym O, Unger T, Albeck S, Prilusky J, Lieberman RL, Aharoni A, Silman I, Sussman JL, Tawfik DS, Fleishman SJ (2018) Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Molecular Cell. 70:337–346

    Article  CAS  Google Scholar 

  • Haque AM, Hwang CE, Kim SC, Cho D, Lee HY, Cho KM, Lee JH (2020) Biodegradation of organophosphorus insecticides by two organophosphorus hydrolase genes (opdA and opdE) from isolated Leuconostoc mesenteroides WCP307 of kimchi origin. Process Biochem 94:340–348

    Article  CAS  Google Scholar 

  • Hawwa R, Larsen SD, Ratia K, Mesecar AD (2009) Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans. J Mol Biol 393(1):36–57

    Article  CAS  PubMed  Google Scholar 

  • Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Raimond BGR, McCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS (2004) Corrigendum: structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:1253

    Article  CAS  Google Scholar 

  • Hartleib J, Ruterjans H (2001) High-yield expression, purification, and characterization of the recombinant diisopropylfluorophosphatase from Loligo vulgaris. Protein Expr Purif 21:210–219

    Article  CAS  PubMed  Google Scholar 

  • Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam SM, Math RK, Cho KM, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2010) Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides. J Agric Food Chem 58(9):5380–5386

    Article  CAS  PubMed  Google Scholar 

  • Islam SMA, Yeasmin S, Islam MS, Islam MS (2017) Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme. Ecotoxicol Environ Saf 141:85–92

    Article  CAS  PubMed  Google Scholar 

  • Jackson CJ, Scott C, Carville A, Mansfield K, Ollis DL, Bird SB (2010) Pharmacokinetics of OpdA, an organophosphorus hydrolase, in the African green monkey. Biochem Pharmacol 80(7):1075–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CJ, Foo JL, Kim HK, Carr PD, Liu JW, Salem G, Ollis DL (2007) In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. J Mol Biol 375:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Jackson CJ, Carr PD, Kim H-K, Liu J-W, Herrald P, Mitić N, Schenk G, Smith CA, Ollis DL (2006) Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. Biochem J. 397:501–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CJ, Weir K, Herlt A, Khurana J, Sutherland TD, Horne I, Easton C, Russell RJ, Scott C, Oakeshott JG (2009) Structure-based rational design of a phosphotriesterase. Appl Environ Microbiol 75(15):5153–5156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquet P, Daude D, Bzdrenga J, Masson P, Elias M, Chabriere E (2016) Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Environ Sci Pollut Res Int 23(9):8200–8218

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Yadav P, Joshi A, Kodgire P (2019) Advances in detection of hazardous organophosphorus compounds using organophosphorus hydrolase-based biosensors. Crit Rev Toxicol 49(5):387–410

    Article  CAS  PubMed  Google Scholar 

  • Jeong YS, Choi JM, Kyeong HH, Choi JY, Kim EJ, Kim HS (2014) Rational design of organophosphorus hydrolase with high catalytic efficiency for detoxifying a V-type nerve agent. Biochem Biophys Res Commun 449(3):263–267

    Article  CAS  PubMed  Google Scholar 

  • Jeong YS, Choi SL, Kyeong HH, Kim JH, Kim EJ, Pan JG, Rha E, Song JJ, Lee SG, Kim HS (2012) High-throughput screening system based on phenolics-responsive transcription activator for directed evolution of organophosphate-degrading enzymes. Protein Eng Des Sel 25(11):725–731

    Article  CAS  PubMed  Google Scholar 

  • Job L, Kohler A, Escher B, Worek F, Skerra A (2020) A catalytic bioscavenger with improved stability and reduced susceptibility to oxidation for treatment of acute poisoning with neurotoxic organophosphorus compounds. Toxicol Lett 321:138–145

    Article  CAS  PubMed  Google Scholar 

  • Kwak Y, Rhee IK, Shin JH (2013) Expression pattern of recombinant organophosphorus hydrolase from Flavobacterium sp. ATCC 27551 in Escherichia coli. Appl Microbiol Biotechnol 97(18):8097–8105

    Article  CAS  PubMed  Google Scholar 

  • Latip W, Knight VF, Abdul Halim N, Ong KK, Mohd Kassim NA, Wan Yunus WMZ, Mohd Noor SA, Mohamad Ali MS (2019) Microbial phosphotriesterase: structure, function, and biotechnological applications. Catalysts 9(8):671–691

    Article  CAS  Google Scholar 

  • Li X, Reheman A, Wu W, Wang D, Wang J, Jia Y, Yan Y (2020) The genome analysis of halotolerant Sphingobium yanoikuyae YC-XJ2 with aryl organophosphorus flame retardants degrading capacity and characteristics of related phosphotriesterase. Int Biodeterior Biodegrad 155:1–10

    Article  CAS  Google Scholar 

  • Li Y, Yang H, Xu F (2018) Identifying and engineering a critical amino acid residue to enhance the catalytic efficiency of Pseudomonas sp. methyl parathion hydrolase. Appl Microbiol Biotechnol 102(15):6537–6545

    Article  CAS  PubMed  Google Scholar 

  • Luo XJ, Kong XD, Zhao J, Chen Q, Zhou J, Xu JH (2014) Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Biotechnol Bioeng 111(10):1920–1930

    Article  CAS  PubMed  Google Scholar 

  • Mehta J, Dhaka S, Paul AK, Dayananda S, Deep A (2019) Organophosphate hydrolase conjugated UiO-66-NH2 MOF based highly sensitive optical detection of methyl parathion. Environ Res 174:46–53

    Article  CAS  PubMed  Google Scholar 

  • Merone L, Mandrich L, Rossi M, Manco G (2005) A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 9(4):297–305

    Article  CAS  PubMed  Google Scholar 

  • Moon Y, Jafry AT, Bang Kang S, Young Seo J, Baek KY, Kim EJ, Pan JG, Choi JY, Kim HJ, Han Lee K, Jeong K, Bae SW, Shin S, Lee J, Lee Y (2019) Organophosphorus hydrolase-poly-beta-cyclodextrin as a stable self-decontaminating bio-catalytic material for sorption and degradation of organophosphate pesticide. J Hazard Mater 365:261–269

    Article  CAS  PubMed  Google Scholar 

  • Mulbry W (2000) Characterization of a novel organophosphorus hydrolase from Nocardiodes simplex NRRL B-24074. Microbiol Res 154(4):285–288

    Article  CAS  PubMed  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulyasuryani A, Prasetyawan S (2015) Organophosphate hydrolase in conductometric biosensor for the detection of organophosphate pesticides. Anal Chem Insights 10:23–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqvi T, Warden AC, French N, Sugrue E, Carr PD, Jackson CJ, Scott C (2014) A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. Plos one. 9:e94177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandiselvam R, Kaavya R, Jayanath Y, Veenuttranon K, Lueprasitsakul P, Divya V, Kothakota A, Ramesh SV (2020) Ozone as a novel emerging technology for the dissipation of pesticide residues in foods—a review. Trends Food Sci Technol 97:38–54

    Article  CAS  Google Scholar 

  • Patel H, Rawtani D, Agrawal YK (2019) A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using acetylcholinesterase—a review. Trends Food Sci Technol 85:78–91

    Article  CAS  Google Scholar 

  • Pedroso MM, Ely F, Mitic N, Carpenter MC, Gahan LR, Wilcox DE, Larrabee JL, Ollis DL, Schenk G (2014) Comparative investigation of the reaction mechanisms of the organophosphate-degrading phosphotriesterases from Agrobacterium radiobacter (OpdA) and Pseudomonas diminuta (OPH). J Biol Inorg Chem 19(8):1263–1275

    Article  CAS  PubMed  Google Scholar 

  • Porzio E, Merone L, Mandrich L, Rossi M, Manco G (2007) A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Biochimie 89(5):625–636

    Article  CAS  PubMed  Google Scholar 

  • Roberts DM, Buckley N (2005) Alkalinisation for organophosphorus pesticide poisoning. Cochrane Database of Systematic Reviews. 1. Art. No.: CD004897. https://doi.org/10.1002/14651858.CD004897.pub2

  • Schofield DA, DiNovo AA (2010) Generation of a mutagenized organophosphorus hydrolase for the biodegradation of the organophosphate pesticides malathion and demeton-S. J Appl Microbiol 109(2):548–557

    Article  CAS  PubMed  Google Scholar 

  • Scott C, Lewis SE, Milla R, Taylor MC, Rodgers AJW, Dumsday G, Brodie JE, Oakeshott JG, Russellet RJ (2010) A free-enzyme catalyst for the bioremediation of environmental atrazine contamination. J Environ Manage. 91:2075–2078

    Article  CAS  PubMed  Google Scholar 

  • Schenk G, Mateen I, Ng T-K, Pedroso MM, Mitić N, Jafelicci M Jr, Marquese RFC, Gahan LR, Ollis DL (2016) Organophosphate-degrading metallohydrolases: structure and function of potent catalysts for applications in bioremediation. Coord Chem Rev 317:122–131

    Article  CAS  Google Scholar 

  • Schrödinger L (2010) The PyMOL molecular graphics system, version 1.3 r1

  • Sharifi M, Robatjazi S-M, Sadri M, Mosaabadi JM (2018) Covalent immobilization of organophosphorus hydrolase enzyme on chemically modified cellulose microfibers: statistical optimization and characterization. React Funct Polym 124:162–170

    Article  CAS  Google Scholar 

  • Shen W, Shu M, Ma L, Ni H, Yan H (2016) High level expression of organophosphorus hydrolase in Pichia pastoris by multicopy ophcM assembly. Protein Expression Purif 119:110–116

    Article  CAS  Google Scholar 

  • Singh BK, Campbell CD, Sorenson SJ, Zhou J (2009) Soil genomics. Nat Rev Microbiol 7:756–764

    Article  CAS  PubMed  Google Scholar 

  • Sirotkina M, Lyagin I, Efremenko E (2012) Hydrolysis of organophosphorus pesticides in soil: new opportunities with ecocompatible immobilized His6-OPH. Int Biodeterior Biodegrad 68:18–23

    Article  CAS  Google Scholar 

  • Songa EA, Okonkwo JO (2016) Recent approaches to improving selectivity and sensitivity of Enzyme-based biosensors for organophosphorus pesticides: a review. Talanta 155:289–304

    Article  CAS  PubMed  Google Scholar 

  • Soares TA, Osman MA, Straatsma TP (2007) Molecular dynamics of organophosphorous hydrolases bound to the nerve agent soman. J Chem Theory and Computation 3:1569–1579

    Article  CAS  Google Scholar 

  • Su F-H, Tabañag IDF, Wu C-Y, Tsai S-L (2017) Decorating outer membrane vesicles with organophosphorus hydrolase and cellulose binding domain for organophosphate pesticide degradation. Chem Eng J 308:1–7

    Article  CAS  Google Scholar 

  • Thakur M, Medintz IL, Walper SA (2019) Enzymatic bioremediation of organophosphate compounds—progress and remaining challenges. Front Bioeng Biotechnol 7:289–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian J, Wang P, Gao S, Chu X, Wu N, Fan Y (2010) Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. FEBS J. 277(23), 4901–4908.chnolo

  • Tian J, Wang P, Huang L, Chu X, Wu N, Fan Y (2013) Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method. Appl Microbiol Biotechnol 97(7):2997–3006

    Article  CAS  PubMed  Google Scholar 

  • Tuovinen K, Kaliste-Korhonen E, Raushel FM, Hänninen O (1994) Phosphotriesterase—a promising candidate for use in detoxification of organophosphates. Fundam Appl Toxicol 23:578–584

    Article  CAS  PubMed  Google Scholar 

  • Trovaslet-Leroy M, Musilova L, Renault F, Brazzolotto X, Misik J, Novotny L, Froment MT, Gillon E, Loiodice M, Verdier L, Masson P, Rochu D, Jun D, Nachon F (2011) Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Toxicol Lett 206(1):14–23

    Article  CAS  PubMed  Google Scholar 

  • Van Dyk JS, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82(3):291–307

    Article  PubMed  CAS  Google Scholar 

  • Venning-Slater M, Hooks DO, Rehm BHA (2014) In vivo self-assembly of stable green fluorescent protein fusion particles and their uses in enzyme immobilization. Appl Environ Microbiol 80(10):3062–3071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Sun Y (2021) Engineering organophosphate hydrolase for enhanced biocatalytic performance: a review. Biochem Eng J 168:107945–107958

    Article  CAS  Google Scholar 

  • Wang J, Tan F, Jiang L, Wang LG, Yang Q, Tang XM (2010) Advances in microbial degradation of organophophates and organophosphorus hydrolase. Conference on Environmental Pollution and Public Health, 342–345

  • Wasim Aktar Md, Paramasivam M, Sengupta D, Purkait S, Ganguly M, Banerjee S (2009) Impact assessment of pesticide residues in fish of Ganga river around Kolkata in West Bengal. Environ Monit Assess 157:97–104

    Article  CAS  Google Scholar 

  • Wille T, Neumaier K, Koller M, Ehinger C, Aggarwal N, Ashani Y, Goldsmith M, Sussman JL, Tawfik DS, Thiermann H, Worek F (2016) Single treatment of VX poisoned guinea pigs with the phosphotriesterase mutant C23AL: intraosseous versus intravenous injection. Toxicol Lett 258:198–206

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Zhao S, Zhang W, Wu H, Guang C, Mu W (2021) Recent advances and future prospective of organophosphorus-degrading enzymes: identification, modification, and application. Crit Rev Biotechnol. 1–18

  • Xue S, Li J, Zhou L, Gao J, Liu G, Ma L, He Y, Jiang Y (2019) Simple purification and immobilization of his-tagged organophosphohydrolase from cell culture supernatant by metal organic frameworks for degradation of organophosphorus pesticides. J Agric Food Chem 67(49):13518–13525

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Song C, Freudl R, Mulchandani A, Qiao C (2010) Twin-arginine translocation of methyl parathion hydrolase in Bacillus subtilis. Environ Sci Technol 44(19):7607–7612

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Renfrew PD, Olsen AJ, Zhang M, Yuvienco C, Bonneau R, Montclare JK (2014) Improved stability and half-life of fluorinated phosphotriesterase using rosetta. ChemBioChem 15(12):1761–1764

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yang C, Jiang H, Qiao C (2008) Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Biodegradation 19(6):831–839

    Article  CAS  PubMed  Google Scholar 

  • Zavon M.R., 1990. Public health impact of pesticides used in agriculture. World Health Organization. ISBN: 92–4–156139–4.

  • Zhang H, Yang C, Li C, Li L, Zhao Q, Qiao C (2008) Functional assembly of a microbial consortium with autofluorescent and mineralizing activity for the biodegradation of organophosphates. J Agric Food Chem 56(17):7897–7902

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu EJ, Tsao C, Kasten SA, Boeri MV, Dao TL, DeBus SJ, Cadieux CL, Baker CA, Otto TC, Cerasoli DM, Chen YT, Jain P, Sun F, Li WC, Hung H-C, Yuan ZF, Ma JR, Bigley AN, Raushel FM, Jiang SY (2019) Sci Transl Med 11:eaau7091

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Xu W, Zhang W, Wu H, Guang C, Mu W (2021) In-depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides. Bioresour Technol 323:124641–124650

    Article  CAS  PubMed  Google Scholar 

  • Zheng YZ, Lan WS, Qiao CL, Mulchandani A, Chen W (2007) Decontamination of vegetables sprayed with organophosphate pesticides by organophosphorus hydrolase and carboxylesterase (B1). Appl Biochem Biotechnol 136(3):233–241

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project is financially supported by the National Key R&D Program of China (2019YFC1604602).

Author information

Authors and Affiliations

Authors

Contributions

SZ: data analysis, writing—original draft; WX: writing—review and editing; WZ: methodology; HW: software; CG: supervision; WM: co-supervision and project administration; all authors read and approved the manuscript.

Corresponding authors

Correspondence to Wei Xu or Cuie Guang.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Xu, W., Zhang, W. et al. Overview of a bioremediation tool: organophosphorus hydrolase and its significant application in the food, environmental, and therapy fields. Appl Microbiol Biotechnol 105, 8241–8253 (2021). https://doi.org/10.1007/s00253-021-11633-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11633-z

Keywords

Navigation