Skip to main content
Log in

An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

OPHC2, a methyl parathion hydrolase (MPH) from Pseudomonas pseudoalcaligenes C2-1 (CGMCC 1150), can degrade a wide range of organophosphate pesticides. Compared with other MPHs, OPHC2 exhibits high thermostability. Its thermostability mechanism, however, remains unknown. In the present study, sequence analysis demonstrated that two cysteines (Cys110 and Cys146) exist in OPHC2, but not in other MPHs. The three-dimensional structural model of OPHC2 performed by computer-assisted homology modelling revealed a potential stacking network with residues Cys110 and Cys146, which probably formed an intramolecular disulfide bond. Furthermore, both sodium dodecyl sulphate-polyacrylamide gel electrophoresis and thiol-titration analyses indicated that OPHC2 contains a disulfide bond. Substitution of the disulfide bond-forming cysteines with alanine, leucine or methionine residues substantially decreased the thermostability of OPHC2, suggesting that disulfide bond formation affects conformational stability. These results, combined with three-dimensional structural modelling, demonstrated that the formation of a C110-C146 disulfide bond may stabilise the conformation of OPHC2, contributing to its thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiyar A, Xiang Y, Leis J (1996) Site-directed mutagenesis using overlap extension PCR. Meth Mol Biol 57:177–191

    CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:138–141

    Article  Google Scholar 

  • Bonvin AM (2006) Flexible protein-protein docking. Curr Opin Struct Biol 16:194–200

    Article  CAS  Google Scholar 

  • Bulleid NJ, Freedman RB (1988) Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335:649–651

    Article  CAS  Google Scholar 

  • Chu X, Zhang X, Chen Y, Liu H, Song D (2003) Study on the properties of methyl parathion hydrolase from Pseudomonas sp. WBC-3. Wei Sheng Wu Xue Bao 43(4):453–459, in Chinese

    CAS  Google Scholar 

  • Chu X-Y, Wu N-F, Deng M-J, Tian J, Yao B, Fan Y-L (2006) Expression of organophosphorus hydrolase OPHC2 in Pichia pastoris: purification and characterization. Protein Expr Purif 49:9–14

    Google Scholar 

  • Chu X, Yu W, Wu L, Liu X, Li N, Li D (2007) Effect of a disulfide bond on mevalonate kinase. Biochim Biophys Acta 1774:1571–1581

    CAS  Google Scholar 

  • Cui Z, Li S, Fu G (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925

    Article  CAS  Google Scholar 

  • Damm KL, Carlson HA (2006) Gaussian-weighted RMSD superposition of proteins: a structural comparison for flexible proteins and predicted protein structures. Biophys J 90:4558–4573

    Article  CAS  Google Scholar 

  • Dong Y-J, Mark B (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663

    Article  CAS  Google Scholar 

  • Fu G, Cui Z, Huang T, Lia S (2004) Expression, purification, and characterization of a novel methyl parathion hydrolase. Protein Expr Purif 36:170–176

    Article  CAS  Google Scholar 

  • Hammond C, Helenius A (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266:456–458

    Article  CAS  Google Scholar 

  • Han Z-L, Han S-Y, Zheng S-P, Lin Y (2009) Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. Appl Microbiol Biotechnol 85:117–126

    Article  CAS  Google Scholar 

  • Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376

    Article  CAS  Google Scholar 

  • Irene H, Sutherland TD, Oakeshott JG, Russell RJ (2002) Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiology 148:2687–2695

    Google Scholar 

  • Kazan D, Ertan H, Erarslan A (1997) Stabilization of Escherichia coli penicillin G acylase against thermal inactivation by cross-linking with dextran dialdehyde polymers. Appl Microbiol Biotechnol 48:191–197

    Article  CAS  Google Scholar 

  • Liu H, Zhang JJ, Wang SJ, Zhang XE, Zhou NY (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334:1107–1114

    Article  CAS  Google Scholar 

  • Mansfeld J, Ulbrich-Hofmann R (2007) The stability of engineered thermostable neutral proteases from Bacillus stearothermophilus in organic solvents and detergents. Biotechnol Bioeng 97:672–679

    Article  CAS  Google Scholar 

  • Mimura H, Nakanishi Y, Maeshima M (2005) Disulfide-bond formation in the H(+)-pyrophosphatase of Streptomyces coelicolor and its implications for redox control and enzyme structure. FEBS Lett 579:3625–3631

    Article  CAS  Google Scholar 

  • Mulbry WW (1992) The aryldialkylphosphatase-encoding gene adpB from Nocardia sp. strain B-1: cloning, sequencing and expression in Escherichia coli. Gene 121:149–153

    Article  CAS  Google Scholar 

  • Qiagen (2003) The QIAexpressionist: a handbook for high-level expression and purification of 6xHis-tagged protein. Qiagen, Hilden, Germany

  • Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of Ellman's reagent. Meth Enzymol 91:49–60

    Article  CAS  Google Scholar 

  • Shimizu-Ibuka A, Matsuzawa H, Sakai H (2006) Effect of disulfide bond introduction on the activity and stability of the extendedspectrum class A β-lactamase Toho-1. Biochim Biophys Acta 1764:1349–1355

    CAS  Google Scholar 

  • Song X, Gragen S, Li Y, Ma Y, Liu J, Yang D, Matoney L, Yan B (2004) Intramolecular disulfide bonds are required for folding hydrolase B into a catalytically active conformation but not for maintaining it during catalysis. Biochem Biophys Res Commun 319:1072–1080

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tian J, Guo X, Chu X, Wu N, Guo J (2008) Predicting the protein family of Methyl Parathion Hydrolase. Int J Bioinform Res Appl 4:201–210

    Article  CAS  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Wedemeyer WJ, Welker E, Narayan M, Scheraga HA (2000) Disulfide bonds and protein folding. Biochemistry 275:26082–26088

    Google Scholar 

  • White KN, Hope DB (1984) Partial purification and characterization of a microsomal carboxylesterase specific for salicylate esters from guinea-pig liver. Biochim Biophys Acta 785:138–147

    CAS  Google Scholar 

  • Wu NF, Deng MJ, Shi XY, Liang GY, Yao B, Fan YL (2004a) Isolation, purification and characterization of a new organophosphorus hydrolase OPHC2. Chinese Sci Bull 49:268–272

    CAS  Google Scholar 

  • Wu NF, Deng MJ, Liang GY, Chu XY, Yao B, Fan YL (2004b) Cloning and expression of ophc2, a new organophosphorus hydrolase gene. Chinese Sci Bull 49:1245–1249

    Article  CAS  Google Scholar 

  • Wu J, Li W, Craddock BP, Foreman KW, Mulvihill MJ, Ji QS, Miller WT, Hubbard SR (2008) Small-molecule inhibition and activation-loop trans-phosphory- lation of the IGF1 receptor. EMBO J 27:1985–1994

    Article  CAS  Google Scholar 

  • Xiao W, Chu X-Y, Tian J, Guo J, Wu N-F (2008) Cloning of a Methyl Parathion Hydrolase Gene from Ochrobactrum sp. J Agric Sci Technol 10(S1):99–102, in Chinese

    Google Scholar 

  • Yang C, Liu N, Guo X, Qiao C (2006) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265:118–125

    Article  CAS  Google Scholar 

  • Zhang R, Cui ZL, Zhang X, Jiang J, Gu J, Li SP (2006) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17:465–472

    Article  CAS  Google Scholar 

  • Zhao HT, Endo S, Ishikura S, Chung R, Hogg PJ, Hara A, El-Kabbani O (2009) Structure/function analysis of a critical disulfide bond in the active site of l-xylulose reductase. Cell Mol Life Sci 66:1570–1579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Min Lin for critical reading of this manuscript. This work was supported by the Ministry of Science and Technology of the People's Republic of China (National “863” Project No. 2007AA100605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning-feng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, Xy., Tian, J., Wu, Nf. et al. An intramolecular disulfide bond is required for the thermostability of methyl parathion hydrolase, OPHC2. Appl Microbiol Biotechnol 88, 125–131 (2010). https://doi.org/10.1007/s00253-010-2738-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2738-5

Keywords

Navigation