Skip to main content
Log in

Integration of comprehensive data and biotechnological tools for industrial applications of Kluyveromyces marxianus

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Among the so-called non-conventional yeasts, Kluyveromyces marxianus has extremely potent traits that are suitable for industrial applications. Indeed, it has been used for the production of various enzymes, chemicals, and macromolecules in addition to utilization of cell biomass as nutritional materials, feed and probiotics. The yeast is expected to be an efficient ethanol producer with advantages over Saccharomyces cerevisiae in terms of high growth rate, thermotolerance and a wide sugar assimilation spectrum. Results of comprehensive analyses of its genome and transcriptome may accelerate studies for applications of the yeast and may further increase its potential by combination with recent biotechnological tools including the CRISPR/Cas9 system. We thus review published studies by merging with information obtained from comprehensive data including genomic and transcriptomic data, which would be useful for future applications of K. marxianus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Banat BM, Nonklang S, Hoshida H, Akada R (2010) Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast 27:29–39

    CAS  PubMed  Google Scholar 

  • Ahuatzi D, Herrero P, de la Ceras T, Moreno F (2004) The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent. J Biol Chem 279(14):14440–14446. https://doi.org/10.1074/jbc.M313431200

    Article  CAS  PubMed  Google Scholar 

  • Ahuatzi D, Riera A, Peláez R, Herrero P, Moreno F (2007) Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J Biol Chem 282(7):4485–4493. https://doi.org/10.1074/jbc.M606854200

    Article  CAS  PubMed  Google Scholar 

  • Bacci Junior M, Siqueira CG, Antoniazi SA, Ueta J (1996) Location of the β-galactosidase of the yeast Kluyveromyces marxianus var. marxianus ATCC 10022. Antonie van Leewenhoek 69:357–361

    CAS  Google Scholar 

  • Becerra M, Gonzalez-Siso MI, Cerdan ME (2006) A transcriptome analysis of Kluyveromyces lactis growing in cheese whey. Int Dairy J 16:207–214. https://doi.org/10.1016/j.idairyj.2005.03.005

    Article  CAS  Google Scholar 

  • Behera S, Sharma NK, Arora R, Kumar S (2016) Effect of evolutionary adaption on xylosidase activity in thermotolerant yeast isolates Kluyveromyces marxianus NIRE-K1 and NIRE-K3. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-016-2055-2

    CAS  PubMed  Google Scholar 

  • Bellasio M, Mattanovich D, Sauer M, Marx H (2015) Organic acids from lignocellulose: Candida lignohabitans as a new microbial cell factory. J Ind Microbiol Biotechnol 42(5):681–691

    CAS  PubMed  Google Scholar 

  • Bellasio M, Peymann A, Steiger MG, Valli M, Sipiczki M, Sauer M, Graf AB, Marx H, Mattanovich D (2016) Complete genome sequence and transcriptome regulation of the pentose utilizing yeast Sugiyamaella lignohabitans. FEMS Yeast Res 16(4):fow037:1–13. https://doi.org/10.1093/femsyr/fow037

    Article  CAS  Google Scholar 

  • Beniwal A, Saini P, Kokkiligadda A, Vij S (2017) Physiological growth and galactose utilization by dairy yeast Kluyveromyces marxianus in mixed sugars and whey during fermentation. 3 Biotech 7:349. https://doi.org/10.1007/s13205-017-0985-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Brady D, Marchant R, McHale L, McHale AP (1995) Isolation and partial characterization of β-galactosidase activity produced by a thermotolerant strain of Kluyveromyces marxianus during growth on lactose-containing media. Enzym Microb Technol 17:696–699

    CAS  Google Scholar 

  • Breuer U, Harms H (2006) Debaryomyces hasenii-an extremophilic yeast with biotechnological potential. Yeast 23(6). https://doi.org/10.1002/yea.1374

    CAS  PubMed  Google Scholar 

  • Cadete RM, Rosa CA (2017) The yeasts of the genus Spathaspora: potential candidates for second-generation biofuel production. Yeast 35:191–199. https://doi.org/10.1002/yea.3279

    Article  CAS  PubMed  Google Scholar 

  • Cadete RM, Santos RO, Melo MA, Mouro A, Gonçalves DL, Stambuk BU, Gomes FC, Lachance MA, Rosa CA (2009) Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 9(8):1338–1342. https://doi.org/10.1111/j.1567-1364.2009.00582.x

    Article  CAS  PubMed  Google Scholar 

  • Cadete RM, Melo MA, Dussán KJ, Rodrigues RC, Silva SS, Zilli JE, Vital MJ, Gomes FC, Lachance MA, Rosa CA (2012) Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. PLoS One 7(8):e43135. https://doi.org/10.1371/journal.pone.0043135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadete RM, Melo MA, Zilli JE, Vital MJ, Mouro A, Prompt AH, Gomes FC, Stambuk BU, Lachance MA, Rosa CA (2013) Spathaspora brasiliensis sp. nov., Spathaspora suhii sp. nov., Spathaspora roraimanensis sp. nov. and Spathaspora xylofermentans sp. nov., four novel (D)-xylose-fermenting yeast species from Brazilian Amazonian forest. Antonie van Leeuwenhoek 103(2):421–431. https://doi.org/10.1007/s10482-012-9822-z

    PubMed  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    CAS  PubMed  Google Scholar 

  • Cernak P, Estrela R, Poddar S, Skerker JM, Cheng Y, Carlson AK, Chen B, Glynn VM, Furlan M, Ryan OW, Donnelly MK, Arkin AP, Taylor JW, Cate JHD (2018) Engineering Kluyveromyces marxianus as a robust synthetic biology platform host. mBio. Appl Environ Sci 9(5):e01410–e01418

    CAS  Google Scholar 

  • Charoensopharat K, Thanonkeo P, Thanonkeo S, Yamada M (2015) Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie van Leeuwenhoek 108:173–190. https://doi.org/10.1007/s10482-015-0476-5

    Article  CAS  PubMed  Google Scholar 

  • Chassang-Douillet A, Ladet J, Boze H, Galzy P (1973) Respiratory metabolism of Kluyveromyces fragilis van der Walt. Z Allg Mikrobiol 13:193–199

    CAS  PubMed  Google Scholar 

  • Cheon Y, Kim JS, Park JB, Heo P, Lim JH, Jung GY, Seo JH, Park JH, Koo HM, Cho KM, Park JB, Ha SJ, Kweon DH (2014) A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J Biotechnol 182–183:30–36

    PubMed  Google Scholar 

  • Dias O, Pereira R, Gombert AK, Ferreira EC, Rocha I (2014) iOD907, the first genome-scale metabolic model for the milk yeast Kluyveromyces lactis. Biotechnol J 2014(9):776–790. https://doi.org/10.1002/biot.201300242

    Article  CAS  Google Scholar 

  • dos Santos VC, Bragança CRS, Passos FJV, Passos FML (2013) Kinetics of growth and ethanol formation from a mix of glucose/xylose substrate by Kluyveromyces marxianus UFV-3. Antonie Van Leeuwenhoek 103:153–161

    CAS  PubMed  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, de Montigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisramé A, Boyer J, Cattolico L, Confanioleri F, de Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wésolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44

    PubMed  Google Scholar 

  • Fonseca GG, Gombert AK, Heinzle E, Wittmann C (2007) Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res 7:422–435

    CAS  PubMed  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354. https://doi.org/10.1007/s00253-008-1458-6

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H (2006) Kluyveromyces lactis - a retrospective. FEMS Yeast Res 6:323–324

    CAS  PubMed  Google Scholar 

  • Galindo-Leva L, Hughes SR, Lopez-Nunez JC, Jarodsky JM, Erickson A, Lindquist MR, Cox EJ, Bischoff KM, Hoecker EC, Liu S, Qureshi N, Jones MA (2016) Growth, ethanol production, and inulinase activity on various inulin substrates by mutant Kluyveromyces marxianus strains NRRL Y-50798 and NRRL Y-50799. J Ind Microbiol Biotechnol 43:927–939. https://doi.org/10.1007/s10295-016-1771-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, Bai F (2015) Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnol Biofuels 8:115. https://doi.org/10.1186/s13068-015-0295-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gethins L, Guneser O, Demirkol A, Rea MC, Stanton C, Ross RP, Yuceer Y, Momissey JP (2014) Influence of carbon and nitrogen sources on production of volatile fragrance and flavour metabolites by the yeast Kluyveromyces marxianus. Yeast 3047. https://doi.org/10.1002/yea.3047

  • Gombert AK, Madeira JV Jr, Cerdan M, Gonzalez-Siso M (2016) Kluyveromyces marxianus as a host for heterologous protein synthesis. Appl Microbiol Biotechnol 100:6193–6208. https://doi.org/10.1007/s00253-016-7645-y

    Article  CAS  PubMed  Google Scholar 

  • Goncalves JA, Castillo FJ (1982) Partial purification and characterization of β-D-galactosidase from Kluyveromyces marxianus. J Dairy Sci 65:2088–2094

    CAS  Google Scholar 

  • Gonzalez NA, Vazquez A, Zuazaga HGO, Sen A, Olvera HL, de Ortiz SP, Govind NS (2009) Genome-wide expression profiling of the osmoadaptation response of Debaryomyces hansenii. Yeast 26:111–124. https://doi.org/10.1002/yea.1656

    Article  CAS  PubMed  Google Scholar 

  • González-Siso MI, Freire-Picos MA, Ramil E, González-Domínguez M, Rodríguez Torres A, Cerdán ME (2000) Respirofermentative metabolism in Kluyveromyces lactis: insights and perspectives. Enzym Microb Technol 26:699–705

    Google Scholar 

  • Gough S, Flynn O, Hack CJ, Marchant R (1996) Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: simplex optimisation of media supplements. Appl Microbiol Biotechnol 46(2):187–190

    CAS  PubMed  Google Scholar 

  • Gumá-Cintrón Y, Bandyopadhyay A, Rosado W, Shu-Hu W, Nadathur GS (2015) Transcriptomic analysis of cobalt stress in the marine yeast Debaryomyces hansenii. FEMS yeast res 15(8): fov099. https://doi.org/10.1093/femsyr/fov099

  • Harner NK, Wen X, Bajwa PK, Austin GD, Ho CY, Habash MB, Trevors JT, Lee H (2015) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 42(1):1–20

    CAS  PubMed  Google Scholar 

  • Hensing M, Vrouwenvelder H, Hellinga BR, van Dijken H (1994) Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxianus. Appl Microbiol Biotechnol 42:516–521

    CAS  Google Scholar 

  • Heo P, Yang TJ, Chung SC, Cheon Y, Kim JS, Park JB, Koo HM, Cho KM, Seo JH, Park JC, Kweon DH (2013) Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J Biotechnol 167:323–325

    CAS  PubMed  Google Scholar 

  • Hoshida H, Murakami N, Suzuki A, Tamura R, Asakawa J, Abdel-Banat BMA, Nonklang S, Nakamura M, Akada R (2014) Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus. Yeast 31:29–46

    CAS  PubMed  Google Scholar 

  • Hoshida H, Kidera K, Takishita R, Fujioka N, Fukugawa T, Akada R (2018) Enhanced production of extracellular inulinase by the yeast Kluyveromyces marxianus in xylose catabolic state. J Biosci Bioeng 125(6):676–681. https://doi.org/10.1016/j.jbiosc.2017.12.024

    Article  CAS  PubMed  Google Scholar 

  • Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94(1):205–214. https://doi.org/10.1007/s00253-011-3694-4

    PubMed  Google Scholar 

  • Hua Y, Wang J, Zhu Y, Zhang B, Kong X, Li W, Wang D, Hong J (2019) Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microb Cell Factories 18:24. https://doi.org/10.1186/s12934-019-1068-2

    Article  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509. https://doi.org/10.1007/s00253-003-1450-0

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW, Vleet JRHV (2009) Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res 9:793–807. https://doi.org/10.1111/j.1567-1364.2009.00525.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H, Lee DH, Kim SH, Kim HJ, Lee K, Song JY, Kim BK, Sung BH, Park JC, Sohn JH, Koo HM, Kim JF (2012) Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryot Cell 11:1584–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia J, Wheals A (2000) Endopolygalacturonase genes and enzymes from Saccharomyces cerevisiae and Kluyveromyces marxianus. Curr Genet 38:264–270

    CAS  PubMed  Google Scholar 

  • Jolivet P, Bergeron E, Benyair H, Meunier JC (2001) Characterization of major protein phosphatases from selected species of Kluyveromyces: comparison with protein phosphatases from Yarrowia lipolytica. Can J Microbiol 47:861–870

    CAS  PubMed  Google Scholar 

  • Kastner JR, Eiteman MA, Lee SA (2001) Glucose repression of xylitol production in Candida tropicalis mixed-sugar fermentations. Biotehnol Lett 23(20):1663–1667

    CAS  Google Scholar 

  • Khatri I, Tomar R, Ganesan K, Prasad GS, Subramanian S (2017) Complete genome sequence and comparative genomics of the probiotic yeast Saccharomyces boulardii. Sci Rep 7:371. https://doi.org/10.1038/s41598-017-00414-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim OC, Suwannarangsee S, Oh D, Kim S, Seo J, Kim CH, Kang HA, Kim J, Kwon O (2013) Transcriptome analysis of xylose metabolism in the thermotolerant methylotrophic yeast Hansenula polymorpha. Biporocess Biosyst Eng 36:1509–1518. https://doi.org/10.1007/s00449-013-0909-3

    Article  CAS  Google Scholar 

  • Kim TY, Lee SW, Oh MK (2014) Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus. Enzym Microb Technol 61-62:44–47

    CAS  Google Scholar 

  • Kim JS, Park JB, Jang SW, Ha SJ (2015) Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FEML1 due to improved xylose reducatse activity. Appl Biochem Biotechnol 176(7):1975–1984

    CAS  PubMed  Google Scholar 

  • Kim SB, Kwon DH, Park JB, Ha SJ (2019) Alleviation of catabolite repression in Kluyveromyces marxianus: the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose. Biotechnol Biofuels 12:90. https://doi.org/10.1186/s13068-019-1431-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosaka T, Lertwattanasakul N, Rodrussamee N, Nurcholis M, Dung NTP, Keo-Oudone C, Murata M, Götz P, Theodoropoulos C, Suprayogi, Maligan JM, Limtong S, Yamada M (2018) Potential of thermotolerant ethanologenic yeasts isolated from ASEAN countries and their application in high-temperature fermentation. Book Chapter IntechOpen. https://doi.org/10.5772/intechopen.79144

    Google Scholar 

  • Kunze G, Gaillardin C, Czernicka M, Durrens P, Martin T, Böer E, Gabaldón T, Cruz JA, Talla E, Marck C, Goffeau A, Barbe V, Baret P, Baronian K, Beier S, Bleykasten C, Bode R, Casaregola S, Despons L, Fairhead C, Giersberg M, Gierski PP, Hähnel U, Hartmann A, Jankowska D, Jubin C, Jung P, Lafontaine I, Leh-Louis V, Lemaire M, Marcet-Houben M, Mascher M, Morel G, Richard G, Riechen J, Sacerdot C, Sarkar A, Savel G, Schacherer J, Sherman DJ, Stein N, Straub M, Thierry A, Trautwein-Schult A, Vacherie B, Westhof E, Worch S, Dujon B, Souciet J, Wincker P, Scholz U, Neuvéglise C (2014) The complete genome of Blastobotrys (Arxula) adeninivorans LS3-a yeast of biotechnological interest. Biotechnol Biofuels 7:66

    PubMed  PubMed Central  Google Scholar 

  • Lachance MA (2011) Kluyveromyces van der Walt. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomic study. 5th ed. Elsevier, Amsterdam, pp 471–481

    Google Scholar 

  • Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24:17–26

    Google Scholar 

  • Lertwattanasakul N, Rodrussamee N, Suprayogi LS, Thanonkeo P, Kosaka T, Yamada M (2011) Utilization capability of sucrose, raffinose and inulin and its less-sensitiveness to glucose repression in thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. AMB Express 1:20. https://doi.org/10.1186/2191-0855-1-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M, Murata M, Fujimoto N, Suprayogi, Tsuchikane K, Limtong S, Fujita N, Yamada M (2015) Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and trancriptome analyses. Bitoechnol Biofuels 8:47. https://doi.org/10.1186/s13068-015-0227-x

    Article  CAS  Google Scholar 

  • Li P, Fu X, Zhang L, Zhang Z, Li J, Li S (2017) The transcription factors Hsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures. Biotechnol Biofuels 10:289. https://doi.org/10.1186/s13068-017-0984-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Fu X, Li S, Zhang L (2018) Engineering TATA-binding protein Spt15 to improve ethanol tolerance and production in Kluyveromyces marxianus. Biotechnol Biofuels 11:207. https://doi.org/10.1186/s13068-018-1206-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374. https://doi.org/10.1016/j.biortech.2006.10.044

    Article  CAS  PubMed  Google Scholar 

  • Llorente B, Malpertuy A, Blandin G, Artiguenave F, Wincker P, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 12. Kluyveromyces marxianus var. marxianus. FEBS Lett 487:71–75

    CAS  PubMed  Google Scholar 

  • Lobs AK, Schwartz C, Thorwal S, Wheeldon I (2018) Highly multiplexed CRISPRi repression of respiratory functions enhances mitochondrial localized ethyl acetate biosynthesis in Kluyveromyces marxianus. ACS Synth Biol 7:2647–2655. https://doi.org/10.1021/acssynbio.8b00331

    Article  CAS  PubMed  Google Scholar 

  • Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, Fraser JA, Allen JE, Bosdet IE, Brent MR, Chiu R, Doering TL, Donlin MJ, D’Souza CA, Fox DS, Grinberg V, Fu J, Fukushima M, Haas BJ, Huang JC, Janbon G, Jones SJM, Koo HL, Krzywinski MI, Kwon-Chung JK, Lengeler KB, Maiti R, Marra MA, Marra RE, Mathewson CA, Mitchell TG, Pertea M, Riggs FR, Salzberg SL, Schein JE, Shvartsbeyn A, Shin H, Shumway M, Specht CA, Suh BB, Tenney A, Utterback TR, Wickes BL, Wortman JR, Wye NH, Kronstad JW, Lodge JK, Heitman J, Davis RW, Fraser CM, Hyman RW (2005) The genome of the Basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307:1321–1324

    PubMed  PubMed Central  Google Scholar 

  • Lopes MR, Morais CG, Kominek J, Cadete RM, Soares MA, Uetanabaro AP, Fonseca C, Lachance MA, Hittinger CT, Rosa CA (2016) Genomic analysis and D-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae f. a., sp. nov. and Spathaspora gorwiae f. a., sp. nov. FEMS Yeast Res 16(4). https://doi.org/10.1093/femsyr/fow044

    PubMed  Google Scholar 

  • Madeira-Jr JV, Gombert AK (2018) Towards high-temperature fuel ethanol production using Kluyveromyces marxianus: on the search for plug-in strains for the Brazilian sugarcane-based biorefinery. Biomass Bioenergy 119:217–228. https://doi.org/10.1016/j.biombioe.2018.09.010

    Article  CAS  Google Scholar 

  • Marcišauskas S, Ji B, Nielsen J (2019) Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model. bioRxiv. https://doi.org/10.1101/581587

  • Martins DB, De Souza CG, Simoes DA, De Morais MA (2002) The beta-galactosidase activity in Kluyveromyces marxianus CBS 6556 decreases by high concentrations of galactose. Curr Microbiol 44:379–382

    CAS  PubMed  Google Scholar 

  • Mo W, Wang M, Zhan R, Yu Y, He Y, Lu H (2019) Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol Biofuels 12:63. https://doi.org/10.1186/s13068-019-1393-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Morais CG, Batista TM, Kominek J, Borelli BM, Furtado C, Moreira RG, Franco GR, Rosa LH, Fonseca C, Hittinger CT, Lachance MA, Rosa CA (2017) Spathaspora boniae sp. nov., a D-xylose-fermenting species in the Candida albicans/Lodderomyces clade. Int J Syst Evol Microbiol 67(10):3798–3805. https://doi.org/10.1099/ijsem.0.002186

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea J, Molina-Jouve C, Nicaud J (2011) Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 6(11):e27966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey JP, Etschmann MMW, Schrader J, de Billerbeck GM (2015) Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavor and fragrance molecules. Yeast 32:3–16. https://doi.org/10.1002/yea.3054

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Nitiyon S, Lertwattanasakul N, Sootsuwan K, Kosaka T, Thanonkeo P, Limtong S, Yamada M (2015) High-temperature fermentation technology for low-cost bioethanol. J Japan Institute Energy 94:1154–1162. https://doi.org/10.3775/jie.94.1154

    Article  CAS  Google Scholar 

  • Nambu-Nishida Y, Nishida K, Hasunuma T, Kondo A (2017) Development of a comprehensive set of tools for genome engineering in a cold- and thermo-tolerant Kluyveromyces marxianus yeast strain. Sci Rep 7:8993. https://doi.org/10.1038/s41598-017-08356-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambu-Nishida Y, Nishida K, Hasunuma T, Kondo A (2018) Genetic and physiological basis for antibody production by Kluyveromyces marxianus. AMB Express 8:56. https://doi.org/10.1186/s13568-018-0588-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1991) Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10(11):3373–3377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HV, Pulvirenti A, Gaillardin C (2000) Rapid differentiationof the closely related Kluyveromyces lactis var. lactis and K. marxianus strains isolated from dairy products using selective media and PCR/RFLP of the rDNA non transcribed spacer 2. Can J Microbiol 46(12):1115–1122. https://doi.org/10.1139/w00-107

    Article  CAS  PubMed  Google Scholar 

  • Nitiyon S, Keo-oudone C, Murata M, Lertwattanasakul N, Limtong S, Kosaka T, Yamada M (2016) Efficient conversion of xylose to ethanol by stress-tolerant Kluyveromyces marxianus BUNL-21. SpringerPlus 5(185). https://doi.org/10.1186/s40064-016-1881-6

  • Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the Thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nurcholis M, Nitiyon S, Suprayogi RN, Lertwattanasakul N, Limtong S, Kosaka T, Yamada M (2019a) Functional analysis of Mig1 and Rag5 as expressional regulators in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 103:395–410. https://doi.org/10.1007/s00253-018-9462-y

    Article  CAS  PubMed  Google Scholar 

  • Nurcholis M, Murata M, Limtong S, Kosaka T, Yamada M (2019b) MIG1 as a positive regulator for histidine biosynthetic pathway and as a global regulator in thermotolerant yeast Kluyveromyces marxianus. Sci Rep 9:9926. https://doi.org/10.1038/s41598-019-46411-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Merino RA, Varela JA, Coughlan AY, Hoshida H, da Silveira WB, Wilde C, Kuijpers NGA, Geertman J-M, Wolfe KH, Morrissey JP (2018) Ploidy variation in Kluyveromyces marxianus separates dairy and non-dairy isolates. Front Genet 9:94. https://doi.org/10.3389/fgene.2018.00094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchal CJ, Bast L, Russell I, Stewart GG (1988) Repression of xylose utilization by glucose in xylose-fermenting yeasts. Can J Microbiol 34(12):1316–1320

    CAS  Google Scholar 

  • Pentjuss A, Stalidzans E, Liepins J, Kokina A, Martynova J, Zikmanis P, Mozga I, Scherbaka R, Hartman H, Poolman MG, Fell DA, Vigants A (2017) Model-based biotechnological potential analysis of Kluyveromyces marxianus central metabolism. J Ind Microbiol Biotechnol 44:1177–1190. https://doi.org/10.1007/s10295-017-1946-8

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar AS, Varela JA, Juergens H, Daran JG, Morrissey JP (2019) Biological parts for Kluyveromyces marxianus synthetic biology. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00097

  • Ramirez-Zavala B, Mercado-Flores Y, Hernandez-Rodriguez C, Villa-Tanaca L (2004a) Purification and characterization of a lysine aminopeptidase from Kluyveromyces marxianus. FEMS Microbiol Lett 235:369–375

    CAS  PubMed  Google Scholar 

  • Ramirez-Zavala B, Mercado-Flores Y, Hernandez-Rodriguez C, Villa-Tanaca L (2004b) Purification and characterization of a serine carboxypeptidase from Kluyveromyces marxianus. Int J Food Microbiol 91:245–252

    CAS  PubMed  Google Scholar 

  • Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova OA, Mardanov AV, Skryabin KG (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 14(837):1–20

    Google Scholar 

  • Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 30:165–177

    CAS  PubMed  Google Scholar 

  • Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi LS, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90:1573–1586. https://doi.org/10.1007/s00253-011-3218-2

    Article  CAS  PubMed  Google Scholar 

  • Rodrussamee N, Sattayawat P, Yamada M (2018) Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1–2. BMC Microbiol 18(73). https://doi.org/10.1186/s12866-018-1218-4

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and –singnalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    CAS  PubMed  Google Scholar 

  • Rollero S, Bloem A, Ortiz-Julien A, Bauer FF, Camarasa C, Divol B (2019) A comparison of the nitrogen metabolic networks of Kluyveromyces marxianus and Saccharomyces cerevisiae. Environ Microbiol. https://doi.org/10.1111/1462-2920.14756

    CAS  PubMed  Google Scholar 

  • Rouwenhorst RJ, Visser LE, Van der Baan AA, Scheffers A, Van Dijken JP (1988) Production, distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54(5):1131–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saini P, Beniwal A, Kokkiligadda A, Vij S (2017) Evolutionary adaptation of Kluyveromyces marxianus strain for efficient conversion of whey lactose to bioethanol. Process Biochem 62:69–79

    CAS  Google Scholar 

  • Sakihama Y, Hidese R, Hasunuma T, Kondo A (2019) Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions. Sci Rep 9:5319. https://doi.org/10.1038/s41598-019-41863-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schabort DTWP, Letebele PK, Steyn L, Kilian SG, du Preez JC (2016) Differential RNA-seq, multi-network analysis and metabolic regulation analysis of Kluyveromyces marxianus reveals a compartmentalised response to xylose. PLoS One. https://doi.org/10.1371/journal.pone.0156242

    PubMed Central  Google Scholar 

  • Schabort DTWP, Kilian SG, du Preez JC (2018) Gene regulation in Kluyveromyces marxianus in the context of chromosomes. PLoS one 13(1): e0190913. doi.org/10.1371/journal.pone.0190913

    PubMed  PubMed Central  Google Scholar 

  • Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 30:173–190

    CAS  PubMed  Google Scholar 

  • Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0. Nat Protoc 6:1290–1307. https://doi.org/10.1038/nprot.2011.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seda-Miró J, Gonzalez NA, Peres-Matos A, Govind NS (2007) Impairment of cobalt-induced riboflavin biosynthesis in a Debaryomyces hansenii mutant. Can J Microbiol 53(11):1272–1277. https://doi.org/10.1139/W07-098

    Article  CAS  PubMed  Google Scholar 

  • Sharma NK, Behera S, Arora R, Kumar S (2017) Evolutionary adaptation of Kluyveromyces marxianus nire-K3 for enhanced xylose utilization. Front Energy Res. https://doi.org/10.3389/fenrg.2017.00032

  • Snowdon C, Johnston M (2016) A novel role for yeast casein kinases in glucose sensing and signaling. Mol Biol Cell 27(21). https://doi.org/10.1091/mbc.e16-05-0342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stasyk OG, Stasyk OV (2019) Glucose sensing and regulation in yeasts. In: Sibirny A (ed) Non-conventional yeasts: from basic research to application. Spinger, Cham. https://doi.org/10.1007/978-3-030-21110-3_14

    Chapter  Google Scholar 

  • Suprayogi NMT, Lertwattanasakul N, Rodrussamee N, Limtong S, Kosaka T, Yamada M (2015) A Kluyveromyces marxianus 2-deoxyglucose-resistant mutant with enhanced activity of xylose utilization. Int Microbiol 18:235–244. https://doi.org/10.2436/20.1501.01.255

    Article  CAS  PubMed  Google Scholar 

  • Tavares B, Felipe MGA, dos Santos JC, Pereira FM, Gomes SD, Sene L (2019) An experimental and modeling approach for ethanol production by Kluyveromyces marxianus in stirred tank bioreactor using vacuum extraction as a strategy to overcome product inhibition. Renew Energy 131:261e267

    Google Scholar 

  • Trumbly RJ (1992) Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol 6(1):15–21

    CAS  PubMed  Google Scholar 

  • Valdes J, Tapia P, Cepeda V, Varela J, Godoy L, Cubillos FA, Silva E, Martinez C, Ganga MA (2014) Draft genome sequence and transcriptome analysis of the wine spoilage yeast Dekkera bruxellensis LAMAP2480 provides insights into genetic diversity, metabolism and survival. FEMS Microbiol Lett 361:104–106. https://doi.org/10.1111/1574-6968.12630

    Article  CAS  PubMed  Google Scholar 

  • Varize CS, Cadete RM, Lopes LD, Christofoleti-Furlan RM, Lachance MA, Rosa CA, Basso LC (2018) Spathaspora piracicabensis f. a., sp. nov., a D-xylose-fermenting yeast species isolated from rotting wood in Brazil. Antonie Van Leeuwenhoek 111(4):525–531. https://doi.org/10.1007/s10482-017-0974-8

    Article  CAS  PubMed  Google Scholar 

  • Yarimizu T, Nakamura M, Hoshida H, Akada R (2015) Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb Cell Factories 14:20. https://doi.org/10.1186/s12934-015-0203-y

    Article  CAS  Google Scholar 

  • Zachariae W, Kuger P, Breunig KD (1993) Glucose repression of lactose/galactose metabolism in Kluyveromyces lactis is determined by the concentration of the transcriptional activator LA1C9 (K1GAL4). Nucleic Acids Res 21(1):69–77. https://doi.org/10.1093/nar/21.1.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang B, Wang D, Gao X, Hong J (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour Technol 152:192–201

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhang B, Wang D, Gao X, Hong J (2015) Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour Technol 175:642–645

    CAS  PubMed  Google Scholar 

  • Zhang G, Lu M, Wang J, Wang D, Gao X, Hong J (2017) Identification of hexose kinase genes in Kluyveromyces marxianus and thermo-tolerant one step producing glucose-free fructose strain construction. Sci Rep 7:45104. https://doi.org/10.1038/srep45104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Lin J, Fan Y, Lin X (2019) Life cycle of Cryptococcus neoformans. Annu Rev Microbiol 73:1.1–1.26

    Google Scholar 

  • Zhou HX, Xu JL, Chi Z, Liu GL, Chi ZM (2013) β-Galactosidase over-production by a mig1 mutant of Kluyveromyces marxianus KM for efficient hydrolysis of lactose. Biochem Eng J 76:17–24. https://doi.org/10.1016/j.bej.2013.04.010

    Article  CAS  Google Scholar 

  • Zhou HX, Xin FH, Chi Z, Liu GL, Chi ZM (2014) Inulinase production by the yeast Kluyveromyces marxianus with the disrupted MIG1 gene and the over-expressed inulinase gene. Process Biochem 49:1867–1874. https://doi.org/10.1016/j.procbio.2014.08.001

    Article  CAS  Google Scholar 

  • Zhou J, Zhu P, Hu X, Lu H, Yu Y (2018) Improved secretory expression of lignocellulolytic enzymes in Kluyveromyces marxianus by promoter and signal sequence engineering. Biotechnol Biofuels 11:235. https://doi.org/10.1186/s13068-018-1232-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Yamada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals.

Availability of supporting data

No supporting data are provided.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurcholis, M., Lertwattanasakul, N., Rodrussamee, N. et al. Integration of comprehensive data and biotechnological tools for industrial applications of Kluyveromyces marxianus. Appl Microbiol Biotechnol 104, 475–488 (2020). https://doi.org/10.1007/s00253-019-10224-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10224-3

Keywords

Navigation