Skip to main content
Log in

Novel laccases of Ganoderma sp. KU-Alk4, regulated by different glucose concentration in alkaline media

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Physiological regulation of laccase production from Ganoderma sp. KU-Alk4, isolated in Thailand, was controlled by the initial glucose concentration in liquid culture. Different laccase isozymes were produced using different starting concentrations of glucose. With 1% glucose, two isozymes, KULac 1 and 2 were produced, while with 4% glucose, three different isozymes, KULac 3, 4 and 5, were produced. The KULacs differed in their molecular mass, ranging from 53 to 112 kDa. KULac 2 was a new laccase that had a different N-terminal amino acid sequence from other laccases previously reported. All the isozymes had optimum pH at 3.5 and were stable over the wide range of pH, 3.0–10.0, especially in alkaline pH. It is noteworthy that the activities of the four KULacs with 2,6-dimethoxyphenol were extremely high up to 90°C. They retained 100% of their activities at 60°C for 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    Article  CAS  Google Scholar 

  • Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 161:1876–1880

    Google Scholar 

  • D’Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Mycologia 65:5307–5313

    CAS  Google Scholar 

  • Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of laccase. Appl Environ Microbiol 62:1151–1158

    CAS  Google Scholar 

  • Farnet AM, Criquet S, Tagger S, Gil G, Petit JL (2000) Purification, partial characterization, and reactivity with aromatic compounds of two laccases from Marasmius quercophilus strain 17. Can J Microbiol 46:189–194

    Article  CAS  Google Scholar 

  • Fukushima Y, Kirk TK (1995) Laccase component of the Ceriporiopsis subvermispora lignin-degrading system. Appl Environ Microbiol 61:872–876

    CAS  Google Scholar 

  • Germann UA, Müller G, Hunziker PE, Lerch K (1988) Characterization of two allelic forms of Neurospora crassa laccase. J Biol Chem 263:885-896

    CAS  Google Scholar 

  • Gianfreda L (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–26

    Article  CAS  Google Scholar 

  • Golz-Berner K, Walzel B, Zastrow L, Doucet O (2004) Cosmetic and dermatological preparation containing copper-binding proteins for skin lightening. Int Pat Appl WO2004017931

  • Grönqvist S, Buchert J, Rantanen K, Viikari L, Suurnäkki A (2003) Activity of laccase on unbleached and bleached thermomechanical pulp. Enzyme Microbiol Technol 32:439–445

    Article  CAS  Google Scholar 

  • Hedrick JL, Smith AJ (1968) Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys 126:155–164

    Article  CAS  Google Scholar 

  • Jong SC, Birmingham JM (1992) Medicinal benefits of the mushroom Ganoderma. Adv Appl Microbiol 37:101–134

    Article  CAS  Google Scholar 

  • Jung H, Xu F, Li K (2002) Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7. Enzyme Microbiol Technol 30:161–168

    Article  CAS  Google Scholar 

  • Ko EM, Leem YE, Choi HT (2001) Purification and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum. Appl Microbiol Biotechnol 57:98–102

    Article  CAS  Google Scholar 

  • Kojima Y, Tsukuda Y, Kawai Y, Tsukamoto A, Sugiura J, Sakaino M, Kita Y (1990) Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Bacteriol 265:15224–15230

    CAS  Google Scholar 

  • Kondo R, Harazono K, Sakai K (1994) Bleaching of hardwood kraft pulp with manganese peroxidase secreted from Phanerochaete sordida YK-624. Appl Environ Microbiol 60:4359–4363

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  Google Scholar 

  • Litthauer D, van Vuuren MJ, van Tonder A, Wolfaardt FW (2007) Purification and Kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme Microbiol Technol 40:563–568

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Luisa M, Goncalves FC, Steiner W (1996) Purification and characterization of laccase from a newly isolated wood-decaying fungus. In: Jeffries TW, Viikari L (eds) Enzymes for pulp and paper processing. American Chemical Society, Washington, pp 258–265

    Google Scholar 

  • Min KL, Kim YH, Kim YW, Jung HS, Hah YC (2001) Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Arch Biochem Biophys 392:279–286

    Article  CAS  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307

    Article  CAS  Google Scholar 

  • Périé F, Reddy GVB, Blackburn NJ, Gold MH (1998) Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens. Arch Biochem Biophys 353:349–355

    Article  Google Scholar 

  • Perry CR, Matcham SE, Wood DA, Thurston CF (1993) The structure of Laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol 139:171–178

    CAS  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809

    CAS  Google Scholar 

  • Poonpairoj P, Teerapatsakul C, Chitradon L (2001) Trend in using fungal enzymes, lignin- and pectin-degrading enzymes, in improvement of the paper mulberry pulping process. In: Proceedings of the international symposium on paper mulberry and hand-made paper for rural development, Rama Gardens Hotel, Bangkok, Thailand, 19–24 March 2001, pp 170–187

  • Raghukumar C, D’Souza TM, Thorn RG, Reddy CA (1999) Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2103–2111

    CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  Google Scholar 

  • Robles A, Lucas R, Martínez-Cañamero M, Omar NB, Pérez R, Gálvez A (2002) Characterisation of laccase activity produced by the hyphomycete Chalara (syn. Thielaviopsis) paradoxa CH32. Enzyme Microbiol Technol 31:516–522

    Article  CAS  Google Scholar 

  • Rodríguez CS, Luis TH (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv doi:10.1016/j.biotechadv 2006.04.003

  • Ryan S, Schnitzhofer W, Tzanov T, Cavaco-Paulo A, Gübitz GM (2003) An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzyme Microbiol Technol 33:766–774

    Article  CAS  Google Scholar 

  • Saloheimo M, Niku-Paavola ML, Knowles JK (1991) Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J Gen Microbiol 137:1537–1544

    CAS  Google Scholar 

  • Silva CMMS, Melo IS, Oliveira PR (2005) Ligninolytic enzyme production by Ganoderma spp. Enzyme Microbiol Technol 37:324–329

    Article  CAS  Google Scholar 

  • Slomczynski D, Nakas JP, Tanenbaum SW (1995) Production and characterization of laccase from Botrytis cinerea 61-31. Appl Environ Microbiol 61:907–912

    CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    Article  CAS  Google Scholar 

  • Teerapatsakul C, Chitradon L (2003) Some physiological aspects of a white rot fungus, KU-Alk4 on production of ligninolytic enzymes, used in biopulping of paper mulberry. In: Abstract in microbial utilization for recycling of agricultural waste, NRCT-JSPS-DOST-LIPI-VCC, Mahidol University, March 7–8, 25pp

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK. (1988) Lignin peroxidase from Phanerochaete chrysosporium. In: Wood WA, Kellogg ST (eds) Methods in enzymology. Academic, New York 161:238–248

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  Google Scholar 

  • Xiao YZ, Tu XM, Wang J, Zhang M, Cheng Q, Zeng WY, Shi YY (2003) Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Appl Microbiol Biotechnol 60:700–707

    CAS  Google Scholar 

  • Xu F (1999) Laccase. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalyses, bioseparation. Wiley, New York, pp 1545–1554

    Google Scholar 

  • Yaropolov AI, Skorobogatko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase: properties, catalytic mechanism, applicability. Appl Biochem Biotechnol 49:257–279

    CAS  Google Scholar 

  • Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H (1996) Purification, characterization, molecular cloning and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841

    CAS  Google Scholar 

  • Zhang M, Wu F, Wei Z, Xiao Y, Gong W (2006) Characterization and decolorization ability of a laccase from Panus rudis. Enzyme Microbiol Technol 39:92–97

    Article  CAS  Google Scholar 

  • Zouari-Mechichi H, Mechichi T, Dhouib A, Sayadi S, Martínez AT, Martínez MJ (2006) Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microbiol Technol 39:141–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to The Royal Golden Jubilee Ph.D. Program of the Thailand Research fund for the support to CT. We thank Graduate School of Agricultural Science, Tohoku University, Japan for N-terminal analysis facility in particular Prof. Yoshiyuki Kamio, Laboratory of Applied Microbiology, for host and JSPS-NRCT for funding to LC for her short visit. Thanks to Faculty of Science, Kasetsart University, for Sc-TRF fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lerluck Chitradon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teerapatsakul, C., Abe, N., Bucke, C. et al. Novel laccases of Ganoderma sp. KU-Alk4, regulated by different glucose concentration in alkaline media. World J Microbiol Biotechnol 23, 1559–1567 (2007). https://doi.org/10.1007/s11274-007-9401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-007-9401-z

Keywords

Navigation