Skip to main content
Log in

Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Laccases exhibit a wide range of applications, especially in the electrochemical field, where they are regarded as a potential biotic component. Laccase-based biosensors have immense practical applications in the food, environmental, and medical fields. The application of laccases as biocathodes in enzymatic biofuel cells has promising potential in the preparation of implantable equipment. Extensive studies have been directed towards the potential role of fungal laccases as biotic components of electrochemical equipment. In contrast, the potential of prokaryotic laccases in electrochemistry has been not fully understood. However, there has been recent and rapid progress in the discovery and characterization of new types of prokaryotic laccases. In this review, we have comprehensively discussed the application of different sources of laccases as a biocatalytic component in various fields of application. Further, we described the potential of different types of laccases in bioelectrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelkader Z, Chantal G, Le GA, Michael H, Philippe C, Serge C (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2(2):370

  • Aguila SA, Shimomoto D, Ipinza F, Bedollavaldez ZI, Romoherrera J, Contreras OE, Farías MH, Alonsonúñez G (2015) A biosensor based on Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes and graphene oxide for polyphenol detection. Sci Technol Adv Mater 16(5):055004

    PubMed  PubMed Central  Google Scholar 

  • Akbulut H, Bozokalfa G, Asker DN, Demir B, Guler E, Odaci Demirkol D, Timur S, Yagci Y (2015) Polythiophene-g-poly (ethylene glycol) with lateral amino groups as a novel matrix for biosensor construction. ACS Appl Mater Interfaces 7(37):20612–20622

    CAS  PubMed  Google Scholar 

  • Almeida I, Henriques F, Carvalho MD, Viana AS (2017) Carbon disulfide mediated self-assembly of laccase and iron oxide nanoparticles on gold surfaces for biosensing applications. J Colloid Interface Sci 485:242–250

    CAS  PubMed  Google Scholar 

  • Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci U S A 102(32):11337–11342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arrocha AA, Cano-Castillo U, Aguila SA, Vazquez-Duhalt R (2014) Enzyme orientation for direct electron transfer in an enzymatic fuel cell with alcohol oxidase and laccase electrodes. Biosens Bioelectron 61:569–574

    CAS  PubMed  Google Scholar 

  • Atanassov P, Apblett C, Banta S, Brozik S, Barton SC, Cooney M, Liaw BY, Mukerjee S, Minteer SD (2007) Enzymatic biofuel cells. Electrochem Soc Interface 16(2):28–31

    CAS  Google Scholar 

  • Babadostu A, Guldu OK, Demirkol DO, Medine EI, Unak P, Timur S (2015) Affinity based laccase immobilization on modified magnetic nanoparticles: biosensing platform for the monitoring of phenolic compounds. Int J Polym Mater 64(5):260–266

    CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    CAS  PubMed  Google Scholar 

  • Battista E, Lettera V, Villani M, Calestani D, Gentile F, Netti PA, Iannotta S, Zappettini A, Coppedè N (2017) Enzymatic sensing with laccase-functionalized textile organic biosensors. Org Electron 40:51–57

    CAS  Google Scholar 

  • Beneyton T, Beyl Y, Guschin DA, Griffiths AD, Taly V, Schuhmann W (2011a) The thermophilic CotA laccase from Bacillus subtilis: bioelectrocatalytic evaluation of O2 reduction in the direct and mediated electron transfer regime. Electroanalysis 23(8):1781–1789

    CAS  Google Scholar 

  • Beneyton T, El Harrak A, Griffiths AD, Hellwig P, Taly V (2011b) Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications. Electrochem Commun 13(1):24–27

    CAS  Google Scholar 

  • Benzie IFF, Szeto YT (1999) Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 47(2):633–636

    CAS  PubMed  Google Scholar 

  • Berini F, Verce M, Ausec L, Rosini E, Tonin F, Pollegioni L, Mandić-Mulec I (2018) Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens. Appl Microbiol Biotechnol 102(5):2425–2439

    CAS  PubMed  Google Scholar 

  • Boujakhrout A, Jimenez-Falcao S, Martínez-Ruiz P, Sánchez A, Díez P, Pingarrón JM, Villalonga R (2016) Novel reduced graphene oxide-glycol chitosan nanohybrid for the assembly of an amperometric enzyme biosensor for phenols. Analyst 141(13):4162–4169

    CAS  PubMed  Google Scholar 

  • Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31(11):1639–1650

    CAS  PubMed  Google Scholar 

  • Brugnerotto P, Silva TR, Brondani D, Zapp E, Vieira IC (2016) Gold nanoparticles stabilized in β-cyclodextrin and decorated with laccase applied in the construction of a biosensor for Rutin. Electroanalysis 29(4)

    Google Scholar 

  • Cabaj J, Jędrychowska A, Zając D, Krawiec S, Sołoducho J (2016) Phenolic compounds determination using laccase-based electrode modified with conducting polymer support. Int J Electrochem Sci 11(1):609–620

    CAS  Google Scholar 

  • Cambria M, Cambria A, Ragusa S, Rizzarelli E (2000) Production, purification, and properties of an extracellular laccase from Rigidoporus lignosus. Protein Expr Purif 18(2):141–147

    CAS  PubMed  Google Scholar 

  • Cesarino I, Galesco HV, Moraes FC, Lanza MRV, Machado SAS (2013) Biosensor based on electrocodeposition of carbon nanotubes/polypyrrole/laccase for neurotransmitter detection. Electroanalysis 25(2):394–400

    CAS  Google Scholar 

  • Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17(2):326–342

    CAS  PubMed  Google Scholar 

  • Chauhan PS, Goradia B, Saxena A (2017) Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 7(5):323

    PubMed  PubMed Central  Google Scholar 

  • Chawla S, Rawal R, Kumar D, Pundir CS (2012a) Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode. Anal Biochem 430(1):16–23

    CAS  PubMed  Google Scholar 

  • Chawla S, Rawal R, Sharma S, Pundir CS (2012b) An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices. Biochem Eng J 68:76–84

    CAS  Google Scholar 

  • Chen T, Barton SC, Binyamin G, Gao Z, Zhang Y, Kim HH, Heller A (2001) A miniature biofuel cell. J Am Chem Soc 123(35):8630–8631

    CAS  PubMed  Google Scholar 

  • Chen X, Li D, Li G, Luo L, Ullah N, Wei Q, Huang F (2015) Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor. Appl Surf Sci 328:444–452

    CAS  Google Scholar 

  • Dawei L, Pengfei L, Jiadeng Z, Yao L, Chen C, Xiangwu Z, Qufu W (2015) NiCu alloy nanoparticle-loaded carbon nanofibers for phenolic biosensor applications. Sensors 15(11):29419–29433

    Google Scholar 

  • de Albuquerque YD, Ferreira LF (2007) Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes. Anal Chim Acta 596(2):210–221

    PubMed  Google Scholar 

  • de Oliveira Neto JR, Rezende SG, Lobón GS, Garcia TA, Macedo IYL, Garcia LF, Alves VF, Torres IMS, Santiago MF, Schmidt F (2017) Electroanalysis and laccase-based biosensor on the determination of phenolic content and antioxidant power of honey samples. Food Chem 237:1118–1123

    PubMed  Google Scholar 

  • Di Fusco M, Tortolini C, Deriu D, Mazzei F (2010) Laccase-based biosensor for the determination of polyphenol index in wine. Talanta 81(1–2):235–240

    PubMed  Google Scholar 

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym 68(2):117–128

    CAS  Google Scholar 

  • Dzyadevych SV, Arkhypova VN, Soldatkin AP, El'skaya AV, Martelet C, Jaffrezic-Renault N (2008) Amperometric enzyme biosensors: past, present and future. IRBM 29(2–3):171–180

    Google Scholar 

  • Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 278(21):19416–19425

    CAS  PubMed  Google Scholar 

  • Eremia SA, Vasilescu I, Radoi A, Litescu SC, Radu GL (2013) Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content. Talanta 110(110):164–170

    CAS  PubMed  Google Scholar 

  • Fan L, Zhao M, Wang Y (2015) Expression of CotA laccase in Pichia pastoris and its electrocatalytic sensing application for hydrogen peroxide. Appl Microbiol Biotechnol 99(22):9483–9493

    CAS  PubMed  Google Scholar 

  • Ferapontova EE (2017) Electrochemical analysis of dopamine: perspectives of specific in vivo detection. Electrochim Acta 245:664–671

    CAS  Google Scholar 

  • Fernandez-Fernandez M, Angeles Sanroman M, Moldes D (2013) Recent developments and applications of immobilized laccase. Biotechnol Adv 31(8):1808–1825

    CAS  PubMed  Google Scholar 

  • Ferry Y, Leech D (2005) Amperometric detection of catecholamine neurotransmitters using electrocatalytic substrate recycling at a laccase electrode. Electroanalysis 17(2):113–119

    CAS  Google Scholar 

  • Forootanfar H, Faramarzi MA, Shahverdi AR, Yazdi MT (2011) Purification and biochemical characterization of extracellular laccase from the ascomycete Paraconiothyrium variabile. Bioresour Technol 102(2):1808–1814

    CAS  PubMed  Google Scholar 

  • Fu J, Li D, Li G, Huang F, Wei Q (2015a) Carboxymethyl cellulose assisted immobilization of silver nanoparticles onto cellulose nanofibers for the detection of catechol. J Electroanal Chem 738:92–99

    CAS  Google Scholar 

  • Fu J, Pang Z, Yang J, Huang F, Cai Y, Wei Q (2015b) Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application. Appl Surf Sci 349:35–42

    CAS  Google Scholar 

  • Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC (2008) Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens Bioelectron 23(8):1229–1235

    CAS  PubMed  Google Scholar 

  • García-Guzmán JJ, Hernández-Artiga MP, León PPD, Bellido-Milla D (2015) Selective methods for polyphenols and sulphur dioxide determination in wines. Food Chem 182:47–54

    PubMed  Google Scholar 

  • Gavnholt B, Larsen K (2002) Molecular biology of plant laccases in relation to lignin formation. Physiol Plant 116(3):273–280

    CAS  Google Scholar 

  • Geetanjali K, Santosh S, Naik SN (2009) Food processing a tool to pesticide residue dissipation—a review. Food Res Int 42(1):26–40

    Google Scholar 

  • Ghindilis AL, Gavrilova VP, Yaropolov AI (1992) Laccase-based biosensor for determination of polyphenols: determination of catechols in tea. Biosens Bioelectron 7(2):127–131

    CAS  PubMed  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67(3):369–385

    CAS  PubMed  Google Scholar 

  • Giatti Marques De Souza C, Kirst Tychanowicz G, Farani De Souza D, Peralta RM (2004) Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. J Basic Microbiol 44(2):129–136

    Google Scholar 

  • Godoy-Navajas J, Aguilar-Caballos MP, Gómez-Hens A (2015) Automatic determination of polyphenols in wines using laccase and terbium oxide nanoparticles. Food Chem 166:29–34

    CAS  PubMed  Google Scholar 

  • Gonzalez-Rivera JC, Osma JF (2015) Fabrication of an amperometric flow-injection microfluidic biosensor based on laccase for in situ determination of phenolic compounds. Biomed Res Int

  • Gupta N, Lee FS, Farinas ET (2010) Laboratory evolution of laccase for substrate specificity. J Mol Catal B Enzym 62(3–4):230–234. https://doi.org/10.1016/j.molcatb.2009.10.012

    Article  CAS  Google Scholar 

  • Halamkova L, Halamek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134(11):5040–5043

    CAS  PubMed  Google Scholar 

  • Holzinger M, Goff AL, Cosnier S (2012) Carbon nanotube/enzyme biofuel cells. Electrochim Acta 82(21):179–190

    CAS  Google Scholar 

  • Hua Z, Qin Q, Bai X, Wang C, Huang X (2015) β-Cyclodextrin inclusion complex as the immobilization matrix for laccase in the fabrication of a biosensor for dopamine determination. Sensors Actuators B Chem 220:1169–1177

    CAS  Google Scholar 

  • Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183(18):5426–5430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibarra-Escutia P, Gómez JJ, Calas-Blanchard C, Marty JL, Ramírez-Silva MT (2010) Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. Talanta 81(4–5):1636–1642

    CAS  PubMed  Google Scholar 

  • Jabbari S, Dabirmanesh B, Arab SS, Amanlou M, Daneshjou S, Gholami S, Khajeh K (2017) A novel enzyme based SPR-biosensor to detect bromocriptine as anergoline derivative drug. Sensors Actuators B Chem 240:519–527

    CAS  Google Scholar 

  • Kavetskyy T, Smutok O, Gonchar M, Demkiv O, Klepach H, Kukhazh Y, Šauša O, Petkova T, Boev V, Ilcheva V (2017) Laccase-containing ureasil–polymer composite as the sensing layer of an amperometric biosensor. J Appl Polym Sci 134(134):45278

    Google Scholar 

  • Kim J, Jia H, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24(3):296–308

    CAS  PubMed  Google Scholar 

  • Kim JH, Hong SG, Sun HJ, Ha S, Kim J (2016) Precipitated and chemically-crosslinked laccase over polyaniline nanofiber for high performance phenol sensing. Chemosphere 143:142–147

    CAS  PubMed  Google Scholar 

  • Ko EM, Leem YE, Choi H (2001) Purification and characterization of laccase isozymes from the white-rot basidiomycete Ganoderma lucidum. Appl Microbiol Biotechnol 57(1–2):98–102

    CAS  PubMed  Google Scholar 

  • Kohori NA, Silva MKLD, Cesarino I (2017) Evaluation of graphene oxide and reduced graphene oxide in the immobilization of laccase enzyme and its application in the determination of dopamine. J Solid State Electrochem 22(1):1–8

    Google Scholar 

  • Kontani R, Tsujimura S, Kano K (2009) Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes. Bioelectrochemistry 76(1–2):10–13

    CAS  PubMed  Google Scholar 

  • Kumar SV, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83(4):386–394

    CAS  PubMed  Google Scholar 

  • Le Goff A, Holzinger M, Cosnier S (2015) Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cell Mol Life Sci 72(5):941–952

    PubMed  Google Scholar 

  • Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41(3–4):185–227

    CAS  PubMed  Google Scholar 

  • Lepore M, Portaccio M (2017) Optical detection of different phenolic compounds by means of a novel biosensor based on sol–gel immobilized laccase. Biotechnol Appl Biochem 64(6): 782-792.

    CAS  PubMed  Google Scholar 

  • Li D, Ao K, Wang Q, Lv P, Wei Q (2016a) Preparation of Pd/bacterial cellulose hybrid nanofibers for dopamine detection. Molecules 21(5):618

    Google Scholar 

  • Li D, Zang J, Zhang J, Ao K, Wang Q, Dong Q, Wei Q (2016b) Sol-gel synthesis of carbon xerogel-ZnO composite for detection of catechol. Materials 9(4):282

    PubMed Central  Google Scholar 

  • Li DW, Lei L, Lv PF, Wang QQ, Lu KY, Wei AF, Wei QF (2016c) Synthesis of polydopamine functionalized reduced graphene oxide-palladium nanocomposite for laccase based biosensor. Bioinorg Chem Appl 2016:1–10

    Google Scholar 

  • Li G, Sun K, Li D, Lv P, Wang Q, Huang F, Wei Q (2016d) Biosensor based on bacterial cellulose-Au nanoparticles electrode modified with laccase for hydroquinone detection. Colloids Surf A Physicochem Eng Asp 509:408–414

    CAS  Google Scholar 

  • Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Biochem 78(3):835–843

    CAS  Google Scholar 

  • Liu H, Tong C, Du B, Liang S, Lin Y (2015) Expression and characterization of LacMP, a novel fungal laccase of Moniliophthora perniciosa FA553. Biotechnol Lett 37(9):1829–1835

    PubMed  Google Scholar 

  • Long F, Zhu A, Shi H (2013) Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 13(10):13928–13948

    CAS  PubMed  Google Scholar 

  • Lu L, Wang T-N, Xu T-F, Wang J-Y, Wang C-L, Zhao M (2013) Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresour Technol 134:81–86

    CAS  PubMed  Google Scholar 

  • Luo H, Jin S, Fallgren PH, Park HJ, Johnson PA (2010) A novel laccase-catalyzed cathode for microbial fuel cells. Chem Eng J 165(2):524–528

    CAS  Google Scholar 

  • Luong JH, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26(5):492–500

    CAS  PubMed  Google Scholar 

  • Ma X, Liu L, Li Q, Liu Y, Yi L, Ma L, Zhai C (2017) High-level expression of a bacterial laccase, CueO from Escherichia coli K12 in Pichia pastoris GS115 and its application on the decolorization of synthetic dyes. Enzym Microb Technol 103:34–41

    CAS  Google Scholar 

  • Maleki N, Kashanian S, Maleki E, Nazari M (2017) A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. Biochem Eng J 128

  • Martinez-Ortiz J, Flores R, Vazquez-Duhalt R (2011) Molecular design of laccase cathode for direct electron transfer in a biofuel cell. Biosens Bioelectron 26(5):2626–2631

    CAS  PubMed  Google Scholar 

  • Martins LO, Durão P, Brissos V, Lindley PF (2015) Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell Mol Life Sci 72(5):911–922

    CAS  PubMed  Google Scholar 

  • Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33(1):25–40

    CAS  PubMed  Google Scholar 

  • Mazlan SZ, Lee YH, Hanifah SA (2017) A new laccase based biosensor for Tartrazine. Sensors 17(12):2859

    Google Scholar 

  • Mehrotra P (2016) Biosensors and their applications—a review. J Oral Biol Craniofac Res 6(2):153–159

    PubMed  PubMed Central  Google Scholar 

  • Mei L-P, Feng J-J, Wu L, Zhou J-Y, Chen J-R, Wang A-J (2015) Novel phenol biosensor based on laccase immobilized on reduced graphene oxide supported palladium–copper alloyed nanocages. Biosens Bioelectron 74:347–352

    CAS  PubMed  Google Scholar 

  • Mendes RK, Arruda BS, Souza EFD, Nogueira AB, Teschke O, Bonugli LO, Etchegaray A, Mendes RK, Arruda BS, Souza EFD (2017) Determination of chlorophenol in environmental samples using a voltammetric biosensor based on hybrid nanocomposite. J Braz Chem Soc 28(7):1212

    CAS  Google Scholar 

  • Méndez-Albores A, Tarín C, Rebollar-Pérez G, Dominguez-Ramirez L, Torres E (2015) Biocatalytic spectrophotometric method to detect paracetamol in water samples. J Environ Sci Health B 50(10):1046–1056

    Google Scholar 

  • Miura Y, Tsujimura S, Kamitaka Y, Kurose S, Kataoka K, Sakurai T, Kano K (2007) Bioelectrocatalytic reduction of O2 catalyzed by CueO from Escherichia coli adsorbed on a highly oriented pyrolytic graphite electrode. Chem Lett 36(1):132–133

    CAS  Google Scholar 

  • Miura Y, Tsujimura S, Kurose S, Kamitaka Y, Kataoka K, Sakurai T, Kano K (2009) Direct electrochemistry of CueO and its mutants at residues to and near type I Cu for oxygen-reducing biocathode. Fuel Cells 9(1):70–78

    CAS  Google Scholar 

  • Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K (2010) Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol 37(8):863–869

    CAS  PubMed  Google Scholar 

  • Molinnus D, Sorich M, Bartz A, Siegert P, Willenberg HS, Lisdat F, Poghossian A, Keusgen M, Schöning MJ (2016) Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate. Sensors Actuators B Chem 237:190–195

    CAS  Google Scholar 

  • Montereali MR, Seta LD, Vastarella W, Pilloton R (2010) A disposable laccase–tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J Mol Catal B Enzym 64(3):189–194

    CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43(5):523–535

    CAS  Google Scholar 

  • Mot AC, Silaghi-Dumitrescu R (2012) Laccases: complex architectures for one-electron oxidations. Biochemistry 77(12):1395–1407

    CAS  PubMed  Google Scholar 

  • Moya R, Saastamoinen P, Hernández M, Suurnäkki A, Arias E, Mattinen ML (2011) Reactivity of bacterial and fungal laccases with lignin under alkaline conditions. Bioresour Technol 102(21):10006–10012

    CAS  PubMed  Google Scholar 

  • Munteanu F-D, Lindgren A, Émneus J, Gorton L, Ruzgas T, Csöregi E, Ciucu A, Van Huystee R, Gazaryan IG, Lagrimini LM (1998) Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. Anal Chem 70(13):2596–2600

    CAS  PubMed  Google Scholar 

  • Myasoedova NM, Renfeld ZV, Podieiablonskaia EV, Samoilova AS, Chernykh AM, Classen T, Pietruszka J, Kolomytseva MP, Golovleva LA (2017) Novel laccase—producing ascomycetes. Microbiology 86(4):503–511

    CAS  Google Scholar 

  • Navarra C, Goodwin C, Burton S, Danieli B, Riva S (2010) Laccase-mediated oxidation of phenolic derivatives. J Mol Catal B Enzym 65(1–4):52–57

    CAS  Google Scholar 

  • Nazari M, Kashanian S, Rafipour R (2015) Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol. Spectrochim Acta A 145:130–138

    CAS  Google Scholar 

  • Neto SA, Zimbardi ALRL, Cardoso FP, Crepaldi LB, Minteer SD, Jorge JA, Furriel RPM, Andrade ARD (2016) Potential application of laccase from Pycnoporus sanguineus in methanol/O2 biofuel cells. J Electroanal Chem 765(5):2–7

  • Oliveira TM, Fatima Barroso M, Morais S, Araujo M, Freire C, de Lima-Neto P, Correia AN, Oliveira MB, Delerue-Matos C (2013a) Laccase-Prussian blue film-graphene doped carbon paste modified electrode for carbamate pesticides quantification. Biosens Bioelectron 47:292–299

    CAS  PubMed  Google Scholar 

  • Oliveira TM, Fatima Barroso M, Morais S, de Lima-Neto P, Correia AN, Oliveira MB, Delerue-Matos C (2013b) Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 106:137–143

    CAS  PubMed  Google Scholar 

  • Palanisamy S, Ramaraj SK, Chen S-M, Yang TC, Yi-Fan P, Chen T-W, Velusamy V, Selvam S (2017) A novel laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol. Sci Rep 7:41214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59(2):73–84

    CAS  Google Scholar 

  • Patel SKS, Anwar MZ, Kumar A, Otari SV, Pagolu RT, Kim SY, Kim IW, Lee JK (2018) Fe 2 O 3 yolk-shell particle-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8

    CAS  Google Scholar 

  • Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomater 12(1):1–15

    Google Scholar 

  • Portaccio M, Di Tuoro D, Arduini F, Moscone D, Cammarota M, Mita DG, Lepore M (2013) Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for bisphenol A detection. Electrochim Acta 109:340–347

    CAS  Google Scholar 

  • Povedano E, Cincotto FH, Parrado C, Díez P, Sánchez A, Canevari TC, Machado SA, Pingarrón JM, Villalonga R (2017) Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens Bioelectron 89(Pt 1):343–351

    CAS  PubMed  Google Scholar 

  • Qu J, Lou T, Wang Y, Dong Y, Xing H (2015) Determination of catechol by a novel laccase biosensor based on zinc-oxide sol-gel. Anal Lett 48(12):1842–1853

    CAS  Google Scholar 

  • Reuillard B, Abreu C, Lalaoui N, Le Goff A, Holzinger M, Ondel O, Buret F, Cosnier S (2015) One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 106:73–76

    CAS  PubMed  Google Scholar 

  • Ribeiro FW, Barroso MF, Morais S, Viswanathan S, de Lima-Neto P, Correia AN, Oliveira MB, Delerue-Matos C (2014) Simple laccase-based biosensor for formetanate hydrochloride quantification in fruits. Bioelectrochemistry 95:7–14

    CAS  PubMed  Google Scholar 

  • Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM, Dieck-Assad G, Martínez-Chapa SO, Barceló D, Parra R (2015) Laccase-based biosensors for detection of phenolic compounds. TrAC Trends Anal Chem 74:21–45

    Google Scholar 

  • Romeroarcos M, Garnicaromo MG, Martínezflores HE (2016) Electrochemical study and characterization of an amperometric biosensor based on the immobilization of laccase in a nanostructure of TiO2 synthesized by the sol-gel method. Materials 9(7):543

    Google Scholar 

  • Romero-Arcos M, Garnica-Romo MG, Martínez-Flores HE (2017) Characterization of amperometric laccase biosensor based on carbon nanotube. Procedia Technol 27:279–281

    Google Scholar 

  • Sabela MI, Gumede N, Singh P, Bisetty K (2012) Evaluation of antioxidants in herbal tea with a laccase biosensor. Int J Electrochem Sci 7(6):4918–4928

    CAS  Google Scholar 

  • Sadeghi S, Fooladi E, Malekaneh M (2015) A new amperometric biosensor based on Fe3O4/polyaniline/laccase/chitosan biocomposite-modified carbon paste electrode for determination of catechol in tea leaves. Appl Biochem Biotechnol 175(3):1603–1616

    CAS  PubMed  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    CAS  PubMed  Google Scholar 

  • Santhanam N, Vivanco JM, Decker SR, Reardon KF (2011) Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol 29(10):480–489

    CAS  PubMed  Google Scholar 

  • Santoro C, Babanova S, Erable B, Schuler A, Atanassov P (2016) Bilirubin oxidase based enzymatic air-breathing cathode: operation under pristine and contaminated conditions. Bioelectrochemistry 108:1–7

    CAS  PubMed  Google Scholar 

  • Sarika C, Shivakumar MS, Shivakumara C, Krishnamurthy G, Murthy BN, Lekshmi IC (2016) A novel amperometric catechol biosensor based on α-FeO nanocrystals-modified carbon paste electrode. Artif Cells Nanomed Biotechnol 45(3):1

    Google Scholar 

  • Sayut DJ, Sun L (2010) Creating designer laccases. Chem Biol 17(9):918–920

    CAS  PubMed  Google Scholar 

  • Sekretaryova AN, Volkov AV, Zozoulenko IV, Turner AP, Vagin MY, Eriksson M (2016) Total phenol analysis of weakly supported water using a laccase-based microband biosensor. Anal Chim Acta 907:45–53

    CAS  PubMed  Google Scholar 

  • Sharpe E, Fang H, Schuckers S, Andreescu S, Bradley R (2016) Effects of brewing conditions on the antioxidant capacity of twenty-four commercial green tea varieties. Food Chem 192:380–387

    CAS  PubMed  Google Scholar 

  • Silva TR, Vieira IC (2016) A biosensor based on gold nanoparticles stabilized in poly (allylamine hydrochloride) and decorated with laccase for determination of dopamine. Analyst 141(1):216–224

    CAS  PubMed  Google Scholar 

  • Singh G, Bhalla A, Kaur P, Capalash N, Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev Environ Sci Biotechnol 10(4):309–326. https://doi.org/10.1007/s11157-011-9257-4

    Article  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799

    CAS  PubMed  Google Scholar 

  • Świetlikowska A, Gniadek M, Pałys B (2013) Electrodeposited graphene nano-stacks for biosensor applications. Surface groups as redox mediators for laccase. Electrochim Acta 98:75–81

    Google Scholar 

  • Ulcnik A, Kralj Cigic I, Pohleven F (2013) Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 29(12):2239–2247

    CAS  PubMed  Google Scholar 

  • Upan J, Reanpang P, Chailapakul O, Jakmunee J (2016) Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone. Talanta 146:766–771

    CAS  PubMed  Google Scholar 

  • Uzunoglu A, Ramirez I, Andreasen E, Stanciu LA (2016) Layer by layer construction of ascorbate interference-free amperometric lactate biosensors with lactate oxidase, ascorbate oxidase, and ceria nanoparticles. Microchim Acta 183(5):1667–1675

    CAS  Google Scholar 

  • Vasilescu I, Eremia SAV, Penu R, Albu C, Radoi A, Litescu SC, Radu GL (2014) Disposable dual sensor array for simultaneous determination of chlorogenic acid and caffeine from coffee. RSC Adv 5(1):261–268

    Google Scholar 

  • Vasilescu I, Eremia SA, Kusko M, Radoi A, Vasile E, Radu G-L (2016) Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosens Bioelectron 75:232–237

    CAS  PubMed  Google Scholar 

  • Vaz-Dominguez C, Campuzano S, Rüdiger O, Pita M, Gorbacheva M, Shleev S, Fernandez VM, De Lacey AL (2008) Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosens Bioelectron 24(4):531–537

    CAS  PubMed  Google Scholar 

  • Verrastro M, Cicco N, Crispo F, Morone A, Dinescu M, Dumitru M, Favati F, Centonze D (2016) Amperometric biosensor based on laccase immobilized onto a screen-printed electrode by matrix assisted pulsed laser evaporation. Talanta 154:438–445

    CAS  PubMed  Google Scholar 

  • Vlamidis Y, Gualandi I, Tonelli D (2017) Amperometric biosensors based on reduced GO and MWCNTs composite for polyphenols detection in fruit juices. J Electroanal Chem 799:285–292

    CAS  Google Scholar 

  • Wang K, Tang J, Zhang Z, Gao Y, Chen G (2012) Laccase on Black Pearl 2000 modified glassy carbon electrode: characterization of direct electron transfer and biological sensing properties for pyrocatechol. Electrochim Acta 70:112–117

    CAS  Google Scholar 

  • Wang K, Liu P, Ye Y, Li J, Zhao W, Huang X (2014a) Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine. Sensors Actuators B Chem 197(197):292–299

    CAS  Google Scholar 

  • Wang Q, Cui J, Li G, Zhang J, Li D, Huang F, Wei Q (2014b) Laccase immobilized on a PAN/adsorbents composite nanofibrous membrane for catechol treatment by a biocatalysis/adsorption process. Molecules 19(3):3376–3388

    PubMed  Google Scholar 

  • Wang T, Milton RD, Abdellaoui S, Hickey DP, Minteer SD (2016) Laccase inhibition by arsenite/arsenate: determination of inhibition mechanism and preliminary application to a self-powered biosensor. Anal Chem 88(6):3243–3248

    CAS  PubMed  Google Scholar 

  • Yang J, Li D, Fu J, Huang F, Wei Q (2016a) TiO2 -CuCNFs based laccase biosensor for enhanced electrocatalysis in hydroquinone detection. J Electroanal Chem 766:16–23

    CAS  Google Scholar 

  • Yang J, Li D, Pang Z, Wei Q (2016b) Laccase biosensor based on Ag-doped TiO2 nanoparticles on CuCNFs for the determination of hydroquinone. Nano 11(12):597

    Google Scholar 

  • Yu EH, Prodanovic R, Güven G, Ostafe R, Schwaneberg U (2011) Electrochemical oxidation of glucose using mutant glucose oxidase from directed protein evolution for biosensor and biofuel cell applications. Appl Biochem Biotechnol 165(7–8):1448–1457

    CAS  PubMed  Google Scholar 

  • Zhang W, Yin K, Chen L (2013) Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol 97(13):5681–5689

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Z, Hu Y, Liu J, Ni H, Li L (2017) Phenol biosensor based on glassy carbon electrode directly absorbed Escherichia coli cells with surface-displayed bacterial laccase. Procedia Technol 27:137–138

    Google Scholar 

  • Zhang Y, Dong WL, Lv ZY, Liu JW, Zhang WM, Zhou J, Xin FX, Ma JF, Jiang M (2018a) Surface display of bacterial laccase CotA on Escherichia coli cells and its Appl industrial dye decolorization. Mol Biotechnol 60(9):681–689

    CAS  PubMed  Google Scholar 

  • Zhang Z, Liu J, Fan J, Wang Z, Li L (2018b) Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal Chim Acta 1009:65–72

    CAS  PubMed  Google Scholar 

  • Zhao W, Wang K, Wei Y, Ma Y, Liu L, Huang X (2014) Laccase biosensor based on phytic acid modification of nanostructured SiO2 surface for sensitive detection of dopamine. Langmuir 30(37):11131–11137

    CAS  PubMed  Google Scholar 

  • Zheng Y, Wang D, Li Z, Sun X, Gao T, Zhou G (2018) Laccase biosensor fabricated on flower–shaped yolk–shell SiO2 nanospheres for catechol detection. Colloids Surf A 538: 202-209.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21727818, No. 31700092, No. 21390200, No. 21706125, No. 21706124), the Jiangsu Province Natural Science Foundation for Youths (BK20170997, BK20170993), the Key Science and Technology Project of Jiangsu Province (No. BE2016389), and the China Postdoctoral Science Foundation (No. 2017T100359).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Jiang or Weiliang Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lv, Z., Zhou, J. et al. Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects. Appl Microbiol Biotechnol 102, 10409–10423 (2018). https://doi.org/10.1007/s00253-018-9421-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9421-7

Keywords

Navigation