Skip to main content

Advertisement

Log in

Copper and palladium nanostructures: a bacteriogenic approach

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Copper nanoparticles (CuNPs) and palladium nanoparticles (PdNPs) have attracted wide attention owing to their multifaceted utility in catalysis, sensors, and biomedical applications. Their therapeutic spectrum includes anticancer, antiviral, antibacterial, antifungal, antidiabetic, antioxidant potential which rationalizes the exploration of diverse physical, chemical, and biological routes for fabrication. In this article, we focused on bacterium-assisted design of nanostructured copper and palladium for applications in therapy against multidrug-resistant pathogens, dehalogenation of diatrizoate, Heck coupling of iodobenzene, polymer electric membrane fuel cell, metal recovery, and electronic waste management. Further, hypothesis behind microbial synthesis of PdNPs in E. coli containing [NiFe] hydrogenase Hyd-1 is discussed. Similarly, detailed mechanism of synthesis and stabilization in Cyanobacteria is also documented. Both CuNPs and PdNPs act as potent chemotherapeutic agents that can further be enhanced by conjugation with drugs and/or fluorophores and ligands for simultaneous diagnosis and targeted drug delivery to the cancer site or infection. These bacteriogenic nanoparticles can be used in sensors and pollution control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams CP, Walker KA, Obare SO, Docherty KM (2014) Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One 9(1):e85981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adersh A, Kulkarni AR, Ghosh S, More P, Chopade BA, Gandhi MN (2015) Surface defect rich ZnO quantum dots as antioxidant inhibiting α-amylase and α-glucosidase: a potential anti-diabetic nanomedicine. J Mater Chem B 3:4592–4606

    Google Scholar 

  • Aritonang HF, Onggo D, Ciptati C, Radiman CL (2014) Synthesis of platinum nanoparticles from K2PtCl4 solution using bacterial cellulose matrix. J Nanopart 2014:Article ID 285954

  • Ashajyothi C, Kudsi J, Chandrakanth RK (2014) Biosynthesis and characterization of copper nanoparticles from Enterococcus faecalis. Int J Pharm Bio Sci 5(4):204–211

    CAS  Google Scholar 

  • Bennett JA, Mikheenko IP, Deplanche K, Shannon IJ, Wood J, Macaskie LE (2013) Nanoparticles of palladium supported on bacterial biomass: new re-usable heterogeneous catalyst with comparable activity to homogeneous colloidal Pd in the Heck reaction. Appl Catal B Environ 140–141:700–707

    Article  CAS  Google Scholar 

  • Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7(8):2696–2708

    Article  PubMed  CAS  Google Scholar 

  • Bunge M, Søbjerg LS, Rotaru AE, Gauthier D, Lindhardt AT, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer RL (2010) Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnol Bioeng 107(2):206–215

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Flores BA, Martínez-Álvarez O, Arenas-Arrocena MC, Garcia-Contreras R, Argueta-Figueroa L, de la Fuente-Hernández J, Acosta-Torres LS (2015) Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J Nanomater 2015:Article ID 415238

  • Capeness MJ, Edmundson MC, Horsfall LE (2015) Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20. New Biotechnol 32(6):727–731

    Article  CAS  Google Scholar 

  • Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156(9):2630–2640

    Article  PubMed  CAS  Google Scholar 

  • Dumas A, Couvreur P (2015) Palladium: a future key player in the nanomedical field? Chem Sci 6:2153–2157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharrom’an C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701

    Article  PubMed  CAS  Google Scholar 

  • Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  PubMed  CAS  Google Scholar 

  • Ghorbani HR, Mehr FP, Poor AK (2015) Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium. Orient J Chem 31(1):527–529

    Article  Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Gurav DD, Jabgunde AM, Kale S, Pardesi K, Shinde V, Bellare J, Dhavale DD, Chopade BA (2012) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10:17

    Article  CAS  Google Scholar 

  • Ghosh S, More P, Nitnavare R, Jagtap S, Chippalkatti R, Derle A, Kitture R, Asok A, Kale S, Singh S, Shaikh ML, Ramanamurthy B, Bellare J, Chopade BA (2015a) Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. J Nanomed Nanotechnol S6:007

    Google Scholar 

  • Ghosh S, Jagtap S, More P, Shete UJ, Maheshwari NO, Rao SJ, Kitture R, Kale S, Bellare J, Patil S, Pal JK, Chopade BA (2015b) Dioscorea bulbifera mediated synthesis of novel AucoreAgshell nanoparticles with potent antibiofilm and antileishmanial activity. J Nanomater 2015:Article ID 562938

  • Ghosh S, More P, Derle A, Kitture R, Kale T, Gorain M, Avasthi A, Markad P, Kundu GC, Kale S, Dhavale DD, Bellare J, Chopade BA (2015c) Diosgenin functionalized iron oxide nanoparticles as novel nanomaterial against breast cancer. J Nanosci Nanotechnol 15(12):9464–9472

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Nitnavare R, Dewle A, Tomar GB, Chippalkatti R, More P, Kitture R, Kale S, Bellare J, Chopade BA (2015d) Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities. Int J Nanomedicine 10(1):7477–7490

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh S, Harke AN, Chacko MJ, Gurav SP, Joshi KA, Dhepe A, Dewle A, Tomar GB, Kitture R, Parihar VS, Banerjee K, Kamble N, Bellare J, Chopade BA (2016) Gloriosa superba mediated synthesis of silver and gold nanoparticles for anticancer applications. J Nanomed Nanotechnol 7:4

    Google Scholar 

  • Gurunathan S, Kim ES, Han JW, Park JH, Kim JH (2015) Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules 20:22476–22498

    Article  PubMed  CAS  Google Scholar 

  • Hennebel T, Nevel SV, Verschuere S, Corte SD, Gusseme BD, Cuvelier C, Fitts JP, van der Lelie D, Boon N, Verstraete W (2011) Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol 91:1435–1445

    Article  PubMed  CAS  Google Scholar 

  • Jang GG, Jacobs CB, Gresback RG, Ivanov IN, Meyer HM, Kidder M, Joshi PC, Jellison GE Jr, Phelps TJ, Graham DE, Moon JW (2015) Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. J Mater Chem C 3:644–650

    Article  CAS  Google Scholar 

  • Jose GP, Santra S, Mandal SK, Sengupta TK (2011) Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnol 9:9

    Article  CAS  Google Scholar 

  • Kitture R, Ghosh S, Kulkarni P, Liu XL, Maity D, Patil SI, Jun D, Dushing Y, Laware SL, Chopade BA, Kale SN (2012) Fe3O4-citrate curcumin: promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia. J Appl Phys 111:064702

    Article  CAS  Google Scholar 

  • Kitture R, Chordiya K, Gaware S, Ghosh S, More PA, Kulkarni P, Chopade BA, Kale SN (2015) ZnO nanoparticles-red sandalwood conjugate: a promising anti-diabetic agent. J Nanosci Nanotechnol 15:4046–4051

    Article  PubMed  CAS  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomate 2011:1–16

  • Majumder DR (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4(10):4380–4389

    Google Scholar 

  • Mallick A, More P, Ghosh S, Chippalkatti R, Chopade BA, Lahiri M, Basu S (2015) Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells. ACS Appl Mater Interfaces 7:7584–7598

    Article  PubMed  CAS  Google Scholar 

  • Martins M, Assunc A, Martins H, Matos AP, Costa MC (2013) Palladium recovery as nanoparticles by an anaerobic bacterial community. J Chem Technol Biotechnol 88:2039–2045

    CAS  Google Scholar 

  • Ng CK, Tan TKC, Song H, Cao B (2013) Reductive formation of palladium nanoparticles by Shewanella oneidensis: role of outer membrane cytochromes and hydrogenases. RSC Adv 3:22498–22503

    Article  CAS  Google Scholar 

  • Ogi T, Honda R, Tamaoki K, Saito N, Konishi Y (2010) Biopreparation of highly dispersed Pd nanoparticles on bacterial cell and their catalytic activity for polymer electrolyte fuel cell. Mater Res Soc Symp Proc 1272

  • Omajali JB, Mikheenko IP, Merroun ML, Wood J, Macaskie LE (2015) Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans. J Nanopart Res 17:264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:233

    Article  CAS  Google Scholar 

  • Ramanathan R, Field MR, Mullane APO, Smooker PM, Bhargava SK, Bansal V (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5(6):2300–2306

    Article  PubMed  CAS  Google Scholar 

  • Rokade SS, Joshi KA, Mahajan K, Tomar G, Dubal DS, Parihar VS, Kitture R, Bellare J, Ghosh S (2017) Novel anticancer platinum and palladium nanoparticles from Barleria prionitis. Glob J Nanomedicine 2(5):555600

    Google Scholar 

  • Salunke GR, Ghosh S, Santosh RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA (2014) Rapid efficient synthesis and characterization of AgNPs, AuNPs and Ag AuNPs from a medicinal plant, Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine 9:2635–2653

    PubMed  PubMed Central  Google Scholar 

  • Sant DG, Gujarathi TR, Harne SR, Ghosh S, Kitture R, Kale S, Chopade BA, Pardesi KR (2013) Adiantum philippense L. frond assisted rapid green synthesis of gold and silver nanoparticles. J Nanopart 2013:1–9 Article ID 182320

    Article  CAS  Google Scholar 

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 3(9):374–383

    Google Scholar 

  • Singh R, Shedbalkar U, Wadhwani S, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-015-6622-1

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nano particles by Streptomyces sp for development of antimicrobial textiles. Glob J Biotechnol Biochem 5(3):153–160

    CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM 62(12):102–104

    Article  CAS  Google Scholar 

  • Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100:2555–2566. https://doi.org/10.1007/s00253-016-7300-7

    Article  PubMed  CAS  Google Scholar 

  • Windt WD, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325

    Article  PubMed  Google Scholar 

  • Yates MD, Cusick RD, Logan BE (2013) Extracellular palladium nanoparticle production using Geobacter sulfurreducens. ACS Sustain Chem Eng 1:1165–1171

    Article  CAS  Google Scholar 

  • Zhang W, Qiao X, Chena J (2007) Synthesis of silver nanoparticles—effects of concerned parameters in water/oil microemulsion. Mater Sci Eng B 142(1):1–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sougata Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S. Copper and palladium nanostructures: a bacteriogenic approach. Appl Microbiol Biotechnol 102, 7693–7701 (2018). https://doi.org/10.1007/s00253-018-9180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9180-5

Keywords

Navigation