Skip to main content

Advertisement

Log in

Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 ± 0.02 h−1 and 5.58 ± 0.6 h−1 in batches with initial concentrations of 10 and 50 mg L−1 Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L−1 diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg−1 Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baxter-Plant V, Mikheenko IP, Macaskie LE (2003) Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation 14(2):83–90

    Article  CAS  Google Scholar 

  • Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts JP (2010) Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ Sci Technol 44(19):7635–7640

    Article  CAS  Google Scholar 

  • Daesch G, Mortenso LE (1968) Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. J Bacteriol 96(2):346–351

    Article  CAS  Google Scholar 

  • De Gusseme B, Hennebel T, Christiaens E, Saveyn H, Verbeken K, Boon N, Verstraete W (2011) Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res 45(4):1856–1864

    Article  Google Scholar 

  • De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325

    Article  Google Scholar 

  • De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T, Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Anton Leeuw Int J G 90(4):377–389

    Article  CAS  Google Scholar 

  • Deplanche K, Snape TJ, Hazrati S, Harrad S, Macaskie LE (2009) Versatility of a new bioinorganic catalyst: palladized cells of Desulfovibrio desulfuricans and application to dehalogenation of flame retardant materials. Environ Technol 30(7):681–692

    Article  CAS  Google Scholar 

  • Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology-Sgm 156:2630–2640

    Article  CAS  Google Scholar 

  • Ferguson JF, Pietari JMH (2000) Anaerobic transformations and bioremediation of chlorinated solvents. Environ Pollut 107:209–215

    Article  CAS  Google Scholar 

  • Francis AJ, Dodge CJ, Lu FL, Halada GP, Clayton CR (1994) Xps and xanes studies of uranium reduction by Clostridium sp. Environ Sci Technol 28(4):636–639

    Article  CAS  Google Scholar 

  • Harrad S, Robson M, Hazrati S, Baxter-Plant VS, Deplanche K, Redwood MD, Macaskie LE (2007) Dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers using a hybrid bioinorganic catalyst. J Environ Monit 9(4):314–318

    Article  CAS  Google Scholar 

  • Hennebel T, De Gusseme B, Boon N, Verstraete W (2009a) Biogenic metals in advanced water treatment. Trends Biotechnol 27(2):90–98

    Article  CAS  Google Scholar 

  • Hennebel T, Simoen H, De Windt W, Verloo M, Boon N, Verstraete W (2009b) Biocatalytic dechlorination of trichloroethylene with bio-Pd in a pilot-scale membrane reactor. Biotechnol Bioeng 102(4):995–1002

    Article  CAS  Google Scholar 

  • Hennebel T, Verhagen P, Simoen H, De Gusseme B, Vlaeminck SE, Boon N, Verstraete W (2009c) Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere 76(9):1221–1225

    Article  CAS  Google Scholar 

  • Hennebel T, De Corte S, Vanhaecke L, Vanherck K, Forrez I, De Gusseme B, Verhagen P, Verbeken K, Van der Bruggen B, Vankelecom I, Boon N, Verstraete W (2010) Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles. Water Res 44(5):1498–1506

    Article  CAS  Google Scholar 

  • Hennebel T, Benner J, Clauwaert P, Vanhaecke L, Aelterman P, Boon N, Verstraete W (2011) Dehalogenation of environmental pollutants in microbial electrolysis cells with biogenic palladium nanoparticles. Biotechnol Lett 33:89–95

    Article  CAS  Google Scholar 

  • Humphries AC, Penfold DW, Macaskie LE (2007) Cr(VI) reduction by bio and bioinorganic catalysis via use of bio-H-2: a sustainable approach for remediation of wastes. J Chem Technol Biotechnol 82(2):182–189

    Article  CAS  Google Scholar 

  • Jungermann K, Thauer RK, Leimenstoll G, Decker K (1973) Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. BBA Bioenerg 305(2):268–280

    Article  CAS  Google Scholar 

  • Lin ZY, Zhou CH, Wu JM, Cheng H, Liu BL, Ni ZM, Zhou JZ, Fu JK (2002) Adsorption and reduction of palladium Pd(II) by Bacillus licheniformis R08. Chin Sci Bull 47(15):1262–1266

    Article  CAS  Google Scholar 

  • Lloyd JR, Cole JA, Macaskie LE (1997) Reduction and removal of heptavalent technetium from solution by Escherichia coli. J Bacteriol 179(6):2014–2021

    Article  CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64(11):4607–4609

    Article  CAS  Google Scholar 

  • Lloyd JR, Pearce CI, Coker VS, Pattrick RAD, Van Der Laan G, Cutting R, Vaughan DJ, Paterson-Beedle M, Mikheenko IP, Yong P, Macaskie LE (2008) Biomineralization: linking the fossil record to the production of high value functional materials. Geobiol 6(3):285–297

    Article  CAS  Google Scholar 

  • Mabbett AN, Lloyd JR, Macaskie LE (2002) Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579. Biotechnol Bioeng 79(4):389–397

    Article  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    Article  CAS  Google Scholar 

  • Mertens B, Blothe C, Windey K, De Windt W, Verstraete W (2007) Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis. Chemosphere 66(1):99–105

    Article  CAS  Google Scholar 

  • Nandi R, Sengupta S (1996) Involvement of anaerobic reductases in the spontaneous lysis of formate by immobilized cells of Escherichia coli. Enzyme Microb Technol 19(1):20–25

    Article  CAS  Google Scholar 

  • Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor 1(1):21–39

    Article  CAS  Google Scholar 

  • Peters V, Janssen PH, Conrad R (1999) Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen. Curr Microbiol 38(5):285–289

    Article  CAS  Google Scholar 

  • Ternes TA, Stuber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37(8):1976–1982

    Article  CAS  Google Scholar 

  • Yong P, Farr JPG, Harris IR, Macaskie LE (2002) Palladium recovery by immobilized cells of Desulfovibrio desulfuricans using hydrogen as the electron donor in a novel electrobioreactor. Biotechnol Lett 24(3):205–212

    Article  CAS  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2003) A novel electrobiotechnology for the recovery of precious metals from spent automotive catalysts. Environ Technol 24(3):289–297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Tom Hennebel was supported by Ghent University Multidisciplinary Research Partnership (MRP) – Biotechnology for a sustainable economy (01 MRA 510W). Sam Van Nevel (FWO, G.0808.10 N), Simon De Corte (aspirant) and Bart De Gusseme (aspirant) were supported by the Fund of Scientific Research (FWO)-Flanders. Jeff Fitts and Daniel Van der Lelie were funded by the DOE Office of Science, Office of Biological and Environmental Research, under project KPCH137. This research was also part of FWO project no. 7741-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennebel, T., Van Nevel, S., Verschuere, S. et al. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol 91, 1435–1445 (2011). https://doi.org/10.1007/s00253-011-3329-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3329-9

Keywords

Navigation