Skip to main content
Log in

Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: insights into the impact of glucose levels on dimorphism

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dynamic behavior of Yarrowia lipolytica W29 strain under conditions of fluctuating, low, and limited oxygen supply was characterized in batch and glucose-limited chemostat cultures. In batch cultures, transient oscillations between oxygen-rich and -deprived environments induced a slight citric acid accumulation (lower than 29 mg L−1). By contrast, no citric acid was detected in continuous fermentations for all stress conditions: full anoxia (zero pO2 value, 100% N2), limited (zero pO2 value, 75% of cell needs), and low (pO2 close to 2%) dissolved oxygen (DO) levels. The macroscopic behavior (kinetic parameters, yields, viability) of Y. lipolytica was not significantly affected by the exposure to DO fluctuations under both modes of culture. Nevertheless, conditions of oxygen limitation resulted in the destabilization of the glucose-limited growth during the continuous cultivations. Morphological responses of Y. lipolytica to DO oscillations were different between batch and chemostat runs. Indeed, a yeast-to-mycelium transition was induced and progressively intensified during the batch fermentations (filamentous subpopulation reaching 74% (v/v)). While, in chemostat bioreactors, the culture consisted mainly of yeast-like cells (mean diameter not exceeding 5.7 μm) with a normal size distribution. During the continuous cultures, growth at low DO concentration did not induce any changes in Y. lipolytica morphology. Dimorphism (up to 80.5% (v/v) of filaments) was only detected under conditions of oxygen limitation in the presence of a residual glucose excess (more than 0.75 g L−1). These data suggest an impact of glucose levels on the signaling pathways regulating dimorphic responses in Y. lipolytica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amanullah A, Buckland BC, Nienow AW (2004) Mixing in the fermentation and cell culture industries. In: Handbook of industrial mixing. John Wiley & Sons, Inc., pp 1071–1170. doi:10.1002/0471451452.ch18

    Google Scholar 

  • Amanullah A, McFarlane CM, Emery AN, Nienow AW (2001) Scale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol Bioeng 73:390–399. doi:10.1002/bit.1072

    Article  CAS  PubMed  Google Scholar 

  • Anastassiadis S, Aivasidis A, Wandrey C (2002) Citric acid production by Candida strains under intracellular nitrogen limitation. Appl Microbiol Biotechnol 60:81–87. doi:10.1007/s00253-002-1098-1

    Article  CAS  PubMed  Google Scholar 

  • Antonucci S, Bravi M, Bubbico R, Di Michele A, Verdone N (2001) Selectivity in citric acid production by Yarrowia lipolytica. Enzym Microb Technol 28:189–195. doi:10.1016/s0141-0229(00)00288-x

    Article  CAS  Google Scholar 

  • Bellou S, Makri A, Triantaphyllidou IE, Papanikolaou S, Aggelis G (2014) Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiol SGM 160:807–817. doi:10.1099/mic.0.074302-0

    Article  CAS  Google Scholar 

  • Botelho Nunes PM, da Rocha SM, Fonseca Amaral PF, Miguez da Rocha-Leao MH (2013) Study of trans-trans farnesol effect on hyphae formation by Yarrowia lipolytica. Bioprocess Biosyst Eng 36:1967–1975. doi:10.1007/s00449-013-0973-8

    Article  Google Scholar 

  • Braga A, Belo I (2015) Production of gamma-decalactone by Yarrowia lipolytica: insights into experimental conditions and operating mode optimization. J Chem Technol Biotechnol 90:559–565. doi:10.1002/jctb.4349

    Article  CAS  Google Scholar 

  • Braga A, Mesquita DP, Amaral AL, Ferreira EC, Belo I (2015) Aroma production by Yarrowia lipolytica in airlift and stirred tank bioreactors: differences in yeast metabolism and morphology. Biochem Eng J 93:55–62. doi:10.1016/j.bej.2014.09.006

    Article  CAS  Google Scholar 

  • Braga A, Mesquita DP, Amaral AL, Ferreira EC, Belo I (2016) Quantitative image analysis as a tool for Yarrowia lipolytica dimorphic growth evaluation in different culture media. J Biotechnol 217:22–30. doi:10.1016/j.jbiotec.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  • Bussamara R, Fuentefria AM, de Oliveira ES, Broetto L, Simcikova M, Valente P, Schrank A, Vainstein MH (2010) Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresour Technol 101:268–275. doi:10.1016/j.biortech.2008.10.063

    Article  CAS  PubMed  Google Scholar 

  • Bylund F, Collet E, Enfors SO, Larsson G (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess Eng 18:171–180. doi:10.1007/s004490050427

    Article  CAS  Google Scholar 

  • Cervantes-Chavez JA, Kronberg F, Passeron S, Ruiz-Herrera J (2009) Regulatory role of the PKA pathway in dimorphism and mating in Yarrowia lipolytica. Fungal Genet Biol 46:390–399. doi:10.1016/j.fgb.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  • Cervantes-Chavez JA, Ruiz-Herrera J (2006) STE11 disruption reveals the central role of a MAPK pathway in dimorphism and mating in Yarrowia lipolytica. FEMS Yeast Res 6:801–815. doi:10.1111/j.1567-1364.2006.00084.x

    Article  CAS  PubMed  Google Scholar 

  • Cervantes-Chavez JA, Ruiz-Herrera J (2007) The regulatory subunit of protein kinase A promotes hyphal growth and plays an essential role in Yarrowia lipolytica. FEMS Yeast Res 7:929–940. doi:10.1111/j.1567-1364.2007.00265.x

    Article  CAS  PubMed  Google Scholar 

  • Coelho MAZ, Amaral PFF, Belo I (2010) Yarrowia lipolytica: an industrial workhorse. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology Advances, pp. 930–940

  • Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299. doi:10.1111/1574-6976.12065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delvigne F, Boxus M, Ingels S, Thonart P (2009) Bioreactor mixing efficiency modulates the activity of a prpoS::GFP reporter gene in E coli. Microb Cell Fact:8. doi:10.1186/1475-2859-8-15

  • Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger E, Schweder T, Hamer G, O’Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Tragardh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85:175–185. doi:10.1016/s0168-1656(00)00365-5

    Article  CAS  PubMed  Google Scholar 

  • Ferreira P, Lopes M, Mota M, Belo I (2016a) Oxygen mass transfer impact on citric acid production by Yarrowia lipolytica from crude glycerol. Biochem Eng J 110:35–42. doi:10.1016/j.bej.2016.02.001

    Article  CAS  Google Scholar 

  • Ferreira P, Lopes M, Mota M, Belo I (2016b) Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073. Chem Pap 70:869–876. doi:10.1515/chempap-2016-0024

    Article  CAS  Google Scholar 

  • Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543. doi:10.1016/j.femsyr.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  • Fickers P, Destain J, Thonart P (2009) Improvement of Yarrowia lipolytica lipase production by fed-batch fermentation. J Basic Microbiol 49:212–215. doi:10.1002/jobm.200800186

    Article  CAS  PubMed  Google Scholar 

  • Finogenova TV, Kamzolova SV, Dedyukhina EG, Shishkanova NV, Il’chenko AP, Morgunov IG, Chernyavskaya OG, Sokolov AP (2002) Biosynthesis of citric and isocitric acids from ethanol by mutant Yarrowia lipolytica N 1 under continuous cultivation. Appl Microbiol Biotechnol 59:493–500. doi:10.1007/s00253-002-1022-8

    Article  CAS  PubMed  Google Scholar 

  • Finogenova TV, Shishkanova NV, Fausek EA, Eremina SS (1991) Biosynthesis of isocitric acid from ethanol by yeasts. Appl Microbiol Biotechnol 36:231–235

    Article  CAS  Google Scholar 

  • Galvagno MA, Iannone LJ, Bianchi J, Kronberg F, Rost E, Carstens MR, Cerrutti P (2011) Optimization of biomass production of a mutant of Yarrowia lipolytica with an increased lipase activity using raw glycerol. Rev Argent Microbiol 43:218–225

    CAS  PubMed  Google Scholar 

  • Gasmi N, Ayed A, Nicaud J-M, Kallel H (2011) Design of an efficient medium for heterologous protein production in Yarrowia lipolytica: case of human interferon alpha 2b. Microb Cell Factories 10. doi:10.1186/1475-2859-10-38

  • Guevaraolvera L, Calvomendez C, Ruizherrera J (1993) The role of polyamine metabolism in dimorphism of Yarrowia lipolytica. J Gen Microbiol 139:485–493

    Article  CAS  Google Scholar 

  • Gustafsson L, Olz R, Larsson K, Larsson C, Adler L (1993) Energy balance calculations as a tool to determine maintenance energy requirements under stress conditions. Pure Appl Chem 65:1893–1898. doi:10.1351/pac199365091893

    CAS  Google Scholar 

  • Han S, Delvigne F, Brognaux A, Charbon GE, Sorensen SJ (2013) Design of growth-dependent biosensors based on destabilized GFP for the detection of physiological behavior of Escherichia coli in heterogeneous bioreactors. Biotechnol Prog 29:553–563. doi:10.1002/btpr.1694

    Article  CAS  PubMed  Google Scholar 

  • Hewitt CJ, Nienow AW (2007) The scale-up of microbial batch and fed-batch fermentation processes. In: Laskin AI, Sariaslani S, Gadd GM (eds) advances in applied microbiology, Vol 62, Advances in Applied Microbiology. 62:105-135. doi:10.1016/s0065-2164(07)62005-x

  • Jost B, Holz M, Aurich A, Barth G, Bley T, Muller RA (2015) The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica. Appl Microbiol Biotechnol 99:1675–1686. doi:10.1007/s00253-014-6252-z

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Shishkanova NV, Morgunov IG, Finogenova TV (2003) Oxygen requirements for growth and citric acid production of Yarrowia lipolytica. FEMS Yeast Res 3:217–222. doi:10.1016/s1567-1356(02)00188-5

    Article  CAS  PubMed  Google Scholar 

  • Kar T, Delvigne F, Destain J, Thonart P (2011) Bioreactor scale-up and design on the basis of physiologically relevant parameters: application to the production of lipase by Yarrowia lipolytica. Biotechnol Agron Soc Envir 15:585–595

    Google Scholar 

  • Kar T, Delvigne F, Masson M, Destain J, Thonart P (2008) Investigation of the effect of different extracellular factors on the lipase production by Yarrowia lipolityca on the basis of a scale-down approach. J Ind Microbiol Biotechnol 35:1053–1059. doi:10.1007/s10295-008-0382-1

    Article  CAS  PubMed  Google Scholar 

  • Kar T, Destain J, Thonart P, Delvigne F (2010) Impact of scaled-down on dissolved oxygen fluctuations at different levels of the lipase synthesis pathway of Yarrowia lipolytica. Biotechnol Agron Soc Envir 14:523–529

    CAS  Google Scholar 

  • Kawasse FM, Amaral PF, Rocha-Leao MHM, Amaral AL, Ferreira EC, Coelho MAZ (2003) Morphological analysis of Yarrowia lipolytica under stress conditions through image processing. Bioprocess Biosyst Eng 25:371–375. doi:10.1007/s00449-003-0319-z

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Cheon SA, Park S, Song Y, Kim JY (2000) Serum-induced hypha formation in the dimorphic yeast Yarrowia lipolytica. FEMS Microbiol Lett 190:9–12. doi:10.1111/j.1574-6968.2000.tb09254.x

    Article  CAS  PubMed  Google Scholar 

  • Kraiem H, Ben Gaïda L, Manon Y, Anne-Archard D, Fillaudeau L (2013) Impact of cell physiology and densities during oxidative axenic cultures of Yarrowia lipolytica on physico-chemical properties of broth. In: 9th World Congress of Chemical Engineering, 18–23 August 2013 (Seoul)

  • Lara AR, Galindo E, Ramirez OT, Palomares LA (2006) Living with heterogeneities in bioreactors. Mol Biotechnol 34:355–381. doi:10.1385/mb:34:3:355

    Article  CAS  PubMed  Google Scholar 

  • Lazar Z, Neuvéglise C, Rossignol T, Devillers H, Morin N, Robak M, Nicaud JM, Crutz-Le Coq AM (2017) Characterization of hexose transporters in Yarrowia lipolytica reveals new groups of sugar porters involved in yeast growth. Fungal Genet Biol 100:1–12. doi:10.1016/j.fgb.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  • Leibrandt S, Le Pennec J-L (2015) Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications. J Volcanol Geotherm Res 297:11–27. doi:10.1016/j.jvolgeores.2015.03.014

    Article  CAS  Google Scholar 

  • Lim JS, Kim JH, Kim C, Kim SW (2002) Morphological and rheological properties of culture broth of Cephalosporium acremonium M25. Korea Aust Rheol J 14:11–16

    Google Scholar 

  • Lopes M, Gomes N, Goncalves C, Coelho MAZ, Mota M, Belo I (2008) Yarrowia lipolytica lipase production enhanced by increased air pressure. Lett Appl Microbiol 46:255–260. doi:10.1111/j.1472-765X.2007.02299.x

    Article  CAS  PubMed  Google Scholar 

  • Lopes M, Gomes N, Mota M, Belo I (2009) Yarrowia lipolytica growth under increased air pressure: influence on enzyme production. Appl Biochem Biotechnol 159:46–53. doi:10.1007/s12010-008-8359-0

    Article  CAS  PubMed  Google Scholar 

  • Madzak C, Gaillardin C, Beckerich JM (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109:63–81. doi:10.1016/j.jbiotec.2003.10.027

    Article  CAS  PubMed  Google Scholar 

  • Madzak C, Otterbein L, Chamkha M, Moukha S, Asther M, Gaillardin C, Beckerich JM (2005) Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res 5:635–646. doi:10.1016/j.femsyr.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  • Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358. doi:10.1016/j.biortech.2009.11.024

    Article  CAS  PubMed  Google Scholar 

  • Mentel M, Piskur J, Neuveglise C, Rycovska A, Cellengova G, Kolarov J (2005) Triplicate genes for mitochondrial ADP/ATP carriers in the aerobic yeast Yarrowia lipolytica are regulated differentially in the absence of oxygen. Mol Gen Genomics 273:84–91. doi:10.1007/s00438-005-1107-z

    Article  CAS  Google Scholar 

  • Morales-Vargas AT, Dominguez A, Ruiz-Herrera J (2012) Identification of dimorphism-involved genes of Yarrowia lipolytica by means of microarray analysis. Res Microbiol 163:378–387. doi:10.1016/j.resmic.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  • Nebohacova M, Mentel M, Nosek J, Kolarov J (1999) Isolation and expression of the gene encoding mitochondrial ADP/ATP carrier (AAC) from the pathogenic yeast Candida parapsilosis. Yeast 15:1237–1242. doi:10.1002/(sici)1097-0061(19990915)15:12<1237::aid-yea446>3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  • O'Shea DG, Walsh PK (2000) The effect of culture conditions on the morphology of the dimorphic yeast Kluyveromyces marxianus var. marxianus NRRLy2415: a study incorporating image analysis. Appl Microbiol Biotechnol 53:316–322

    Article  PubMed  Google Scholar 

  • Ochoa-Estopier A, Guillouet SE (2014) D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica. J Biotechnol 170:35–41. doi:10.1016/j.jbiotec.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  • Oosterhuis NMG (1984) Scale-up of bioreactors, a scale-down approach PhD thesis. Delft University of Technology Delft, The Netherlands

    Google Scholar 

  • Oosterhuis NMG, Kossen NWF (1984) Dissolved oxygen concentration profiles in a production-scale bioreactor. Biotechnol Bioeng 26:546–550. doi:10.1002/bit.260260522

    Article  CAS  PubMed  Google Scholar 

  • Ota Y, Oikawa S, Morimoto Y, Minoda Y (1984) Nutritional factors causing mycelial development of Saccharomycopsis lipolytica. Agric Biol Chem 48:1933–1939

    CAS  Google Scholar 

  • Palande AS, Kulkarni SV, Leon-Ramirez C, Campos-Gongora E, Ruiz-Herrera J, Deshpande MV (2014) Dimorphism and hydrocarbon metabolism in Yarrowia lipolytica var. indica. Arch Microbiol 196:545–556. doi:10.1007/s00203-014-0990-2

    Article  CAS  PubMed  Google Scholar 

  • Palomares LA, Ramírez OT (2003) Bioreactor scale-down. In: Encyclopedia of Cell Technology. John Wiley & Sons, Inc. doi:10.1002/0471250570.spi022

  • Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21:83–87

    Article  CAS  Google Scholar 

  • Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G (2006) Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol 52:134–142. doi:10.1007/s00284-005-0223-7

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92:737–744. doi:10.1046/j.1365-2672.2002.01577.x

    Article  CAS  PubMed  Google Scholar 

  • Parfene G, Horincar V, Tyagi AK, Malik A, Bahrim G (2013) Production of medium chain saturated fatty acids with enhanced antimicrobial activity from crude coconut fat by solid state cultivation of Yarrowia lipolytica. Food Chem 136:1345–1349. doi:10.1016/j.foodchem.2012.09.057

    Article  CAS  PubMed  Google Scholar 

  • Rakicka M, Lazar Z, Dulermo T, Fickers P, Nicaud JM (2015) Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnol Biofuels 8. doi:10.1186/s13068-015-0286-z

  • Rane KD, Sims KA (1994) Oxygen uptake and citric acid production by Candida lipolytica Y 1095. Biotechnol Bioeng 43:131–137. doi:10.1002/bit.260430205

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. In: Laskin AI, Bennett JW, Gadd GM (eds) advances in applied microbiology, Vol 51, vol 51. Advances in applied microbiology. Pp 1-51. doi:10.1016/s0065-2164(02)51000-5

  • Reuss M, Schmalzriedt S, Jenne M (1994) Structured modelling of bioreactors. In: Galindo E, Ramírez OT (eds) Advances in bioprocess engineering. Springer Netherlands, Dordrecht, pp 207–215. doi:10.1007/978-94-017-0641-4_29

    Chapter  Google Scholar 

  • Ruiz-Herrera J, Sentandreu R (2002) Different effectors of dimorphism in Yarrowia lipolytica. Arch Microbiol 178:477–483. doi:10.1007/s00203-002-0478-3

    Article  CAS  PubMed  Google Scholar 

  • Ryu S, Hipp J, Trinh CT (2016) Activating and elucidating metabolism of complex sugars in Yarrowia lipolytica. Appl Environ Microbiol 82:1334–1345. doi:10.1128/aem.03582-15

    Article  CAS  PubMed Central  Google Scholar 

  • Rywinska A, Juszczyk P, Wojtatowicz M, Rymowicz W (2011) Chemostat study of citric acid production from glycerol by Yarrowia lipolytica. J Biotechnol 152:54–57. doi:10.1016/j.jbiotec.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  • Rywińska A, Musiał I, Rymowicz W, Żarowska B, Boruczkowski T (2012) Effect of agitation and aeration on the citric acid production by Yarrowia lipolytica grown on glycerol. Prep Biochem Biotechnol 42:279–291. doi:10.1080/10826068.2012.656868

    Article  PubMed  Google Scholar 

  • Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282. doi:10.1128/mmbr.70.1.253-282.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarris D, Galiotou-Panayotou M, Koutinas AA, Komaitis M, Papanikolaou S (2011) Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J Chem Technol Biotechnol 86:1439–1448. doi:10.1002/jctb.2658

    Article  CAS  Google Scholar 

  • Sweere APJ, Luyben K, Kossen NWF (1987) Regime analysis and scale-down: tools to investigate the performance of bioreactors. Enzym Microb Technol 9:386–398. doi:10.1016/0141-0229(87)90133-5

    Article  CAS  Google Scholar 

  • Timoumi A, Cléret M, Bideaux C, Guillouet SE, Allouche Y, Molina-Jouve C, Fillaudeau L, Gorret N (2017) Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode. Appl Microbiol Biotechnol 101:351–366. doi:10.1007/s00253-016-7856-2

    Article  CAS  PubMed  Google Scholar 

  • Trezeguet V, Zeman I, David C, Lauquin GJM, Kolarov J (1999) Expression of the ADP/ATP carrier encoding genes in aerobic yeasts; phenotype of an ADP/ATP carrier deletion mutant of Schizosaccharomyces pombe. Biochim Biophys Acta-Bioenerg 1410:229–236. doi:10.1016/s0005-2728(98)00180-7

    Article  CAS  Google Scholar 

  • Vlaev D, Mann R, Lossev V, Vlaev SD, Zahradnik J, Seichter P (2000) Macro-mixing and Streptomyces fradiae—modelling oxygen and nutrient segregation in an industrial bioreactor. Chem Eng Res Des 78:354–362. doi:10.1205/026387600527473

    Article  CAS  Google Scholar 

  • Workman M, Holt P, Thykaer J (2013) Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. AMB Express:3. doi:10.1186/2191-0855-3-58

  • Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and rheology in filamentous cultivations. In: Laskin AI, Sariaslani S, Gadd GM (eds) Adv Appl Microbiol 72:89–136 doi:10.1016/s0065-2164(10)72004-9

  • Zahradnik J, Mann R, Fialova M, Vlaev D, Vlaev SD, Lossev V, Seichter P (2001) A networks-of-zones analysis of mixing and mass transfer in three industrial bioreactors. Chem Eng Sci 56:485–492. doi:10.1016/s0009-2509(00)00252-9

    Article  CAS  Google Scholar 

  • Zhang H, Zhang K, Fan SD (2009) CFD simulation coupled with population balance equations for aerated stirred bioreactors. Eng Life Sci 9:421–430. doi:10.1002/elsc.200800074

    Article  CAS  Google Scholar 

  • Zinjarde SS, Kale BV, Vishwasrao PV, Kumar AR (2008) Morphogenetic behavior of tropical marine yeast Yarrowia lipolytica in response to hydrophobic substrates. J Microbiol Biotechnol 18:1522–1528

    CAS  PubMed  Google Scholar 

  • Zinjarde SS, Pant A, Deshpande MV (1998) Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water. Mycol Res 102:553–558. doi:10.1017/s0953756297005418

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by Airbus, Agence Nationale de la Recherche (ANR) and Commissariat aux Investissements d’Avenir via the project ProBio3 “Biocatalytic production of lipidic bioproducts from renewable resources and industrial by-products: BioJet Fuel Application” (ref. ANR-11-BTBT-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Gorret.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Luc Fillaudeau and Nathalie Gorret contributed equally to the supervision of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoumi, A., Bideaux, C., Guillouet, S.E. et al. Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: insights into the impact of glucose levels on dimorphism. Appl Microbiol Biotechnol 101, 7317–7333 (2017). https://doi.org/10.1007/s00253-017-8446-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8446-7

Keywords

Navigation