Skip to main content
Log in

Microalgae-based advanced municipal wastewater treatment for reuse in water bodies

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O2 generation, CO2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future studies on microalgae-based advanced wastewater treatment and water reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah MA, Ahmad A, Shah SMU, Shanab SMM, Ali HEA, Abo-State MAM, Othman MF (2016) Integrated algal engineering for bioenergy generation, effluent remediation, and production of high-value bioactive compounds. Biotechnol Bioprocess Eng 21:236–249

    Article  CAS  Google Scholar 

  • Abe K, Komada M, Ookuma A, Itahashi S, Banzai K (2014) Purification performance of a shallow free-water-surface constructed wetland receiving secondary effluent for about 5 years. Ecol Eng 69:126–133

    Article  Google Scholar 

  • Adey W, Luckett C, Jensen K (1993) Phosphorus removal from natural waters using controlled algal production. Restor Ecol 1:29–39

    Article  Google Scholar 

  • Administration SEP (2002) The reuse of urban recycling water—water quality standard for scenic environment use. China Environmental Science Press, Beijing

    Google Scholar 

  • Ak M, Gunduz O (2014) Fate of nutrients in secondary treated municipal wastewater during percolation through the soil media. Clean-Soil Air Water 42:1036–1043

    Article  CAS  Google Scholar 

  • Almasi A, Sharafi K, Hazrati S, Fazlzadehdavil M (2014) A survey on the ratio of effluent algal BOD concentration in primary and secondary facultative ponds to influent raw BOD concentration. Desalin Water Treat 53:3475–3481

    Article  CAS  Google Scholar 

  • Arbib Z, Ruiz J, Álvarez-Díaz P, Garrido-Pérez C, Barragan J, Perales JA (2013) Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Eng 52:143–153

    Article  Google Scholar 

  • Arbib Z, Ruiz J, Álvarez-Díaz P, Garrido-Pérez C, Perales JA (2014) Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res 49:465–474

    Article  CAS  PubMed  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Attasat S, Wanichpongpan P, Ruenglertpanyakul W (2012) Cultivation of microalgae (Oscillatoria okeni and Chlorella vulgaris) using tilapia-pond effluent and a comparison of their biomass removal efficiency. Water Sci Technol 67:271–277

    Article  CAS  Google Scholar 

  • Bilad MR, Arafat HA, Vankelecom IFJ (2014) Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol Adv 32:1283–1300

    Article  CAS  PubMed  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2012) Scenario analysis of nutrient removal from municipal wastewater by microalgal biofilms. Water 4:460–473

    Article  CAS  Google Scholar 

  • Boelee NC, Janssen M, Temmink H, Shrestha R, Buisman CJN, Wijffels RH (2013) Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing. Appl Biochem Biotechnol 172:405–422

    Article  PubMed  CAS  Google Scholar 

  • Boonchai R, Seo G (2015) Microalgae membrane photobioreactor for further removal of nitrogen and phosphorus from secondary sewage effluent. Korean J Chem Eng 32:2047–2052

    Article  CAS  Google Scholar 

  • Bordel S, Guieysse B, Muñoz R (2009) Mechanistic model for the reclamation of industrial wastewaters using algal-bacterial photobioreactors. Environ Sci Technol 43:3200–3207

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288

    Article  CAS  PubMed  Google Scholar 

  • Chan A, Salsali H, McBean E (2014) Nutrient removal (nitrogen and phosphorous) in secondary effluent from a wastewater treatment plant by microalgae. Can J Civ Eng 41:118–124

    Article  CAS  Google Scholar 

  • Chang JJ, Wu SQ, Zhang SY, Zhang SH, Liang W (2014) Comparative evaluation of total phosphorus removal performances for treatment of domestic and secondary wastewater using integrated vertical-flow constructed wetlands: two years’ experience. Desalin Water Treat 56:1379–1388

    Article  CAS  Google Scholar 

  • Chevalier P, Proulx D, Lessard P, Vincent WF, Noüe JDL (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12:105–112

    Article  CAS  Google Scholar 

  • Chi Z, Elloy F, Xie Y, Hu Y, Chen S (2014) Selection of microalgae and cyanobacteriastrains for bicarbonate-based integrated carbon capture and algae production system. Appl Biochem Biotechnol 172:447–457

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Luong TT, Lee D, Oh YK, Lee T (2011) Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol 102:8639–8645

    Article  CAS  PubMed  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Coppens J, Decostere B, Van Hulle S, Nopens I, Vlaeminck SE, De Gelder L, Boon N (2014) Kinetic exploration of nitrate-accumulating microalgae for nutrient recovery. Appl Microbiol Biotechnol 98:8377–8387

    Article  CAS  PubMed  Google Scholar 

  • Craggs RJ, Adey WH, Jessup BK, Oswald WJ (1996) A controlled stream mesocosm for tertiary treatment of sewage. Ecol Eng 6:149–169

    Article  Google Scholar 

  • de Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    Article  PubMed  CAS  Google Scholar 

  • Decostere B, De Craene J, Van Hoey S, Vervaeren H, Nopens I, Van Hulle SWH (2016) Validation of a microalgal growth model accounting with inorganic carbon and nutrient kinetics for wastewater treatment. Chem Eng J 285:189–197

    Article  CAS  Google Scholar 

  • Drexler ILC, Yeh DH (2014) Membrane applications for microalgae cultivation and harvesting: a review. Rev Environ Sci Biotechnol 13:487–504

    Article  CAS  Google Scholar 

  • Drexler ILC, Joustra C, Prieto A, Bair R, Yeh DH (2014) AlgaeSim: a model for integrated algal biofuel production and wastewater treatment. Water Environ Res 86:163–176

    Article  CAS  PubMed  Google Scholar 

  • Droop MR (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis Lutheri. J Mar Biol Assoc UK 48:689–733

    Article  CAS  Google Scholar 

  • Dueñas JF, Alonso JR, Rey ÀF, Ferrer AS (2003) Characterisation of phosphorous forms in wastewater treatment plants. J Hazard Mater 97:193–205

    Article  Google Scholar 

  • Economou CN, Marinakis N, Moustaka-Gouni M, Kehayias G, Aggelis G, Vayenas DV (2015) Lipid production by the filamentous cyanobacterium Limnothrix sp. growing in synthetic wastewater in suspended- and attached-growth photobioreactor systems. Ann Microbiol 65:1941–1948

    Article  CAS  Google Scholar 

  • El Hamouri B (2012) Rethinking natural, extensive systems for tertiary treatment purposes: the high-rate algae pond as an example. Desalin Water Treat 4:128–134

    Article  Google Scholar 

  • European Commission Directive (1998) 98/15/EC of 27 February. Official Journal of the European Communities

  • Gao F, Yang ZH, Li C, Wang YJ, Jin WH, Deng YB (2014) Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode. Bioresour Technol 167:441–446

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Li C, Yang ZH, Zeng GM, Feng LJ, Liu JZ, Liu M, Cai HW (2016a) Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol Eng 92:55–61

    Article  Google Scholar 

  • Gao F, Li C, Yang ZH, Zeng GM, Mu J, Liu M, Cui W (2016b) Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. J Chem Technol Biotechnol 91:2713–2719

    Article  CAS  Google Scholar 

  • Ghosh D, Gopal B (2010) Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland. Ecol Eng 36:1044–1051

    Article  Google Scholar 

  • Gómez C, Escudero R, Morales MM, Figueroa FL, Fernández-Sevilla JM, Acién FG (2013) Use of secondary-treated wastewater for the production of Muriellopsis sp. Appl Microbiol Biotechnol 97:2239–2249

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Serrano C, Morales-Amaral MM, Acién FG, Escudero R, Fernández-Sevilla JM, Molina-Grima E (2015) Utilization of secondary-treated wastewater for the production of freshwater microalgae. Appl Microbiol Biotechnol 99:6931–6944

    Article  PubMed  CAS  Google Scholar 

  • Greenway M (2005) The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia. Ecol Eng 25:501–509

    Article  Google Scholar 

  • Gross M, Mascarenhas V, Wen Z (2015) Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems. Biotechnol Bioeng 112:2040–2050

    Article  CAS  PubMed  Google Scholar 

  • Guzzon A, Bohn A, Diociaiuti M, Albertano P (2008) Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res 42:4357–4367

    Article  CAS  PubMed  Google Scholar 

  • Haario H, Kalachev L, Laine M (2009) Reduced models of algae growth. Bull Math Biol 71:1626–1648

    Article  PubMed  Google Scholar 

  • He S, Xue G (2010) Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). J Hazard Mater 178:895–899

    Article  CAS  PubMed  Google Scholar 

  • Healy MG, Burke P, Rodgers M (2010) The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment. J Environ Sci Health Part A 45:1635–1641

    Article  CAS  Google Scholar 

  • Heaven S, Salter AM, Clarke D, Pak LN (2012) Algal wastewater treatment systems for seasonal climates: application of a simple modelling approach to generate local and regional design guidelines. Water Res 46:2307–2323

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand H, Kahlert M (2001) Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnol Oceanogr 46:1881–1898

    Article  CAS  Google Scholar 

  • Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34:757–763

    Article  CAS  Google Scholar 

  • Hossein SG, Kaan Y, Hossein MA, Mansur Z (2013) Post-treatment of secondary wastewater treatment plant effluent using a two-stage fluidized bed bioreactor system. J Environ Health Sci Eng 11:6723–6723

    Google Scholar 

  • Huang Y, Li L, Liu J, Lin W (2014) Botanical pesticides as potential rotifer-control agents in microalgal mass culture. Algal Res 4:62–69

    Article  Google Scholar 

  • Hulatt CJ, Thomas DN (2010) Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? Bioresour Technol 101:8609–8697

    Article  CAS  Google Scholar 

  • Jansson M (1988) Phosphate uptake and utilization by bacteria and algae. Hydrobiologia 170:177–189

    Article  CAS  Google Scholar 

  • Jiang B, Hu WR, Pei HY, Chen P, Liu QH (2010) The influence of aeration on nitrification and the nitrifier distribution in an upflow biological aerated filter for tertiary treatment of municipal sewage. Desalin Water Treat 24:308–320

    Article  CAS  Google Scholar 

  • Kalkan Ç, Yapsakli K, Mertoglu B, Tufan D, Saatci A (2011) Evaluation of biological activated carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Desalination 265:266–273

    Article  CAS  Google Scholar 

  • Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Article  Google Scholar 

  • Kney AD, Zhao D (2004) A pilot study on phosphate and nitrate removal from secondary wastewater effluent using a selective ion exchange process. Environ Technol 25:533–542

    Article  CAS  PubMed  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18

    Article  CAS  PubMed  Google Scholar 

  • Kosaric N, Nguyen HT, Bergougnou MA (1974) Growth of Spirulina maxima algae in effluents from secondary waste-water treatment plants. Biotechnol Bioeng 16:881–896

    Article  CAS  Google Scholar 

  • Kumar A, Yuan X, Sahu AK, Dewulf J, Ergas SJ, Van Langenhove H (2010) A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J Chem Technol Biotechnol 85:387–394

    Article  CAS  Google Scholar 

  • Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae—a promising tool for heavy metal remediation. Ecotox Environ Safe 113:329–352

    Article  CAS  Google Scholar 

  • Kunikane S, Kaneko M (1984) Growth and nutrient uptake of green alga, Scenedesmus dimorphus, under a wide range of nitrogen/phosphorus ratio. II. Kinetic model. Water Res 8:1313–1326

    Article  Google Scholar 

  • Lacerda LMCF, Queiroz MI, Furlan LT, Lauro MJ, Modenesi K, Jacob-Lopes E, Franco TT (2011) Improving refinery wastewater for microalgal biomass production and CO2 biofixation: predictive modeling and simulation. J Pet Sci Eng 78:679–686

    Article  CAS  Google Scholar 

  • Lananan F, Hamid SHA, Din WNS, Ali N, Khatoon H, Jusoh A, Endut A (2014) Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing effective microorganism (EM-1) and microalgae (Chlorella sp.). Int Biodeterior Biodegrad 95:127–134

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66

    Article  CAS  Google Scholar 

  • Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, Lee SH, Ahn CY (2014) Higher biomass productivity of microalgae in an attached growth system using wastewater. J Microbiol Biotechnol 24:1566–1573

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Jalalizadeh M, Zhang Q (2015) Growth kinetic models for microalgae cultivation: a review. Algal Res 12:497–512

    Article  Google Scholar 

  • Li D, Yang HS, Cui Q, Mao SJ, Xu XH (2009) Synthesis of bacillamide 3 and its analogue. Chin Chem Lett 20:1195–1197

    Article  CAS  Google Scholar 

  • Li X, Hu HY, Yang J (2010) Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotech 27:59–63

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Jeong J, Gray H, Smith S, Sedlak DL (2012) Algal uptake of hydrophobic and hydrophilic dissolved organic nitrogen in effluent from biological nutrient removal municipal wastewater treatment systems. Environ Sci Technol 46:713–721

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Danneels B, Vanormelingen P, Vyverman W (2016) Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: from laboratory flask to outdoor algal turf scrubber (ATS). Water Res 92:61–68

    Article  CAS  PubMed  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  PubMed  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    Article  CAS  Google Scholar 

  • Martinez ME, Sanchez S, Jimenez JM, Yousfi FE, Muñoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  CAS  Google Scholar 

  • Midorikawa I, Aoki H, Omori A, Shimizu T, Kawaguchi Y, Kassai K, Murakami T (2008) Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorbent. Water Sci Technol 58:1601–1607

    Article  CAS  PubMed  Google Scholar 

  • Miller WE, Maloney TE (1971) Effects of secondary and tertiary wastewater effluents on algal growth in a lake-river system. Water Pollution Control Federation 43:2361–2365

    CAS  Google Scholar 

  • Mohammad AS, Khalid BM, Zaid AA, Zakaria AQ (2013) Enhancement of COD-nutrients removals and filterability of secondary clarifier municipal wastewater influent using electrocoagulation technique. Sep Sci Technol 48:673–680

    Article  CAS  Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  PubMed  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Morita M, Watanabe Y, Okawa T, Saiki H (2002) Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol Bioeng 74:136–144

    Article  Google Scholar 

  • National Research Counsil (U.S.) (2012) Water reuse: potential for expanding the nation’s water supply through reuse of municipal wastewater. National Academies Press

  • Naumann T, Çebi Z, Podola B, Melkonian M (2013) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25:1413–1420

    Article  CAS  Google Scholar 

  • Nguyen ML, Westerhoff P, Baker L, Hu Q, Esparza-Soto M, Sommerfeld M (2005) Characteristics and reactivity of algae-produced dissolved organic carbon. J Environ Eng 131:1574–1582

    Article  CAS  Google Scholar 

  • Órpez R, Martínez ME, Hodaifa G, El Yousfi F, Jbari N, Sánchez S (2009) Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246:625–630

    Article  CAS  Google Scholar 

  • Pivokonsky M, Kloucek O, Pivokonska L (2006) Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter. Water Res 40:3045–3052

    Article  CAS  PubMed  Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae—defining the polyphosphate dynamics. Water Res 43:4207–4213

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos Tercero EA, Sforza E, Morandini M, Bertucco A (2014) Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal. Appl Biochem Biotechnol 172:1470–1485

    Article  CAS  PubMed  Google Scholar 

  • Rittmann BE, Mayer B, Westerhoff P, Edwards M (2011) Capturing the lost phosphorus. Chemosphere 84:846–853

    Article  CAS  PubMed  Google Scholar 

  • Ruiz J, Álvarez-Díaz PD, Arbib Z, Garrido-Pérez C, Barragán J, Perales JA (2013a) Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment. Bioresour Technol 127:456–463

    Article  CAS  PubMed  Google Scholar 

  • Ruiz J, Arbib Z, Álvarez-Díaz PD, Garrido-Pérez C, Barragán J, Perales JA (2013b) Photobiotreatment model (PhBT): a kinetic model for microalgae biomass growth and nutrient removal in wastewater. Environ Technol 34:979–991

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  CAS  PubMed  Google Scholar 

  • Samorì G, Samorì C, Guerrini F, Pistocchi R (2013) Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res 47:791–801

    Article  PubMed  CAS  Google Scholar 

  • Santiago AF, Calijuri ML, Assemany PP, Calijuri MC, dos Reis AJ (2013) Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent. Environ Technol 34:1877–1885

    Article  CAS  PubMed  Google Scholar 

  • Schumacher G, Sekoulov I (2002) Polishing of secondary effluent by an algal biofilm process. Water Sci Technol 46:83–90

    CAS  PubMed  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266

    Article  CAS  PubMed  Google Scholar 

  • Shilton AN, Powell N, Guieysse B (2012) Plant based phosphorus recovery from wastewater via algae and macrophytes. Curr Opin Biotechnol 23:884–889

    Article  CAS  PubMed  Google Scholar 

  • Silva NFP, Gonçalves AL, Moreira FC, Silva TFCV, Martins FG, Alvim-Ferraz MCM, Boaventura RAR, Vilar VJP, Pires JCM (2015) Towards sustainable microalgal biomass production by phycoremediation of a synthetic wastewater: a kinetic study. Algal Res 11:350–358

    Article  Google Scholar 

  • Singh NK, Dhar DW (2010) Microalgal remediation of sewage effluent. Proc Indian Natl Sci Acad 76:209–221

    CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Steele JH (1962) Environmental control of photosynthesis in the sea. Limnol Oceanogr 7:137–150

    Article  Google Scholar 

  • Suh IS, Lee CG (2003) Photobioreactor engineering: design and performance. Biotechnol Bioprocess Eng 8:313–321

    Article  CAS  Google Scholar 

  • Sukačová K, Trtílek M, Rataj T (2015) Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res 71:55–63

    Article  PubMed  CAS  Google Scholar 

  • Sydney EB, da Silva TE, Tokarski A, Novak AC, de Carvalho JC, Woiciecohwski AL, Larroche C, Soccol CR (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energy 88:3291–3294

    Article  CAS  Google Scholar 

  • Talbot P, Thébault JM, Dauta A, Noüe JDL (1991) A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment. Water Res 25:465–472

    Article  CAS  Google Scholar 

  • Travieso L, Sánchez E, Borja R, Benítez F, León F, Colmenarejo MF (2004) Evaluation of a laboratory and full-scale microlage pond for tertiary treatment of piggery wastes. Environ Technol 25:565–576

    Article  CAS  PubMed  Google Scholar 

  • Ummalyma SB, Sukumaran RK (2014) Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load. Bioresour Technol 165:295–301

    Article  CAS  PubMed  Google Scholar 

  • United States Environmental Protection Agency (2012) Guidelines for water reuse http://www.epa.gov/

  • Wang B, Lan CQ (2011) Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour Technol 102:5639–5644

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yang H, Wang F (2014a) Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Appl Biochem Biotechnol 172:3307–3329

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Kuo-Dahab WC, Dolan S, Park C (2014b) Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour Technol 154:131–137

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou W, Yang H, Wang F, Ruan R (2015) Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater. Bioresour Technol 196:668–676

    Article  CAS  PubMed  Google Scholar 

  • Wu YH, Li X, Yu Y, Hu HY, Zhang TY, Li FM (2013a) An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent. Bioresour Technol 144:445–451

    Article  CAS  PubMed  Google Scholar 

  • Wu YH, Yang J, Hu HY, Yu Y (2013b) Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecol Eng 60:155–159

    Article  Google Scholar 

  • Wu YH, Hu HY, Yu Y, Zhang TY, Zhu SF, Zhuang LL, Zhang X, Lu Y (2014) Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renew Sust Energ Rev 33:675–688

    Article  CAS  Google Scholar 

  • Wu YH, Yu Y, Hu HY (2015) Microalgal growth with intracellular phosphorus for achieving high biomass growth rate and high lipid/triacylglycerol content simultaneously. Bioresour Technol 192:374–381

    Article  CAS  PubMed  Google Scholar 

  • Xie RJ, Gomez MJ, Xing YJ (2007) Field investigation of advanced oxidation of secondary effluent from municipal wastewater treatment plant. J Environ Sci Health Part A 42:2047–2057

    Article  CAS  Google Scholar 

  • Xu M, Li P, Tang T, Hu Z (2015) Roles of SRT and HRT of an algal membrane bioreactor system with a tanks-in-series configuration for secondary wastewater effluent polishing. Ecol Eng 85:257–264

    Article  Google Scholar 

  • Xu M, Xu S, Bernards M, Hu Z (2016) Evaluation of high density algal cultivation for secondary wastewater polishing. Water Environ Res 88:47–53

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y (2011) Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl Energy 88:3295–3299

    Article  CAS  Google Scholar 

  • Yang IS, Salama ES, Kim JO, Govindwar SP, Kurade MB, Lee M, Roh HS, Jeon BH (2016) Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal. Energy Conv Manag 117:54–62

    Article  CAS  Google Scholar 

  • Yu Y, Wu YH, Zhu SF, Hu HY (2015) The bioavailability of the soluble algal products of different microalgal strains and its influence on microalgal growth in unsterilized domestic secondary effluent. Bioresour Technol 180:352–355

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Hong Y (2014) Comparison in growth, lipid accumulation, and nutrient removal capacities of Chlorella sp. in secondary effluents under sterile and non-sterile conditions. Water Sci Technol 69:573–579

    Article  PubMed  Google Scholar 

  • Zhang SS, Liu H, Fan JF, Yu H (2014) Cultivation of Scenedesmus dimorphus with domestic secondary effluent and energy evaluation for biodiesel production. Environ Technol 36:929–936

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, Li L, Cheng Y, Chen P, Ruan R (2012) Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy 98:433–440

    Article  CAS  Google Scholar 

  • Zhuang LL, Wu YH, Espinosa VMD, Zhang TY, Dao GH, Hu HY (2016) Soluble algal products (SAPs) in large scale cultivation of microalgae for biomass/bioenergy production: a review. Renew Sust Energ Rev 59:141–148

    Article  Google Scholar 

Download references

Acknowledgements

This study was in part supported by Science Fund for Creative Research Groups (No. 21521064), National Natural Science Fund of China (Key Program, No. 51138006), a grant from the China Postdoctoral Science Foundation (No. 2016 M591188), and the Collaborative Innovation Center for Regional Environmental Quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong -Ying Hu.

Ethics declarations

This mini-review does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JH., Zhang, TY., Dao, GH. et al. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Appl Microbiol Biotechnol 101, 2659–2675 (2017). https://doi.org/10.1007/s00253-017-8184-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8184-x

Keywords

Navigation