Skip to main content
Log in

Secretory expression and surface display of a new and biologically active single-chain insulin (SCI-59) analog by lactic acid bacteria

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Insulin plays an important role in drug therapies for diabetes mellitus and as the main route of insulin delivery, subcutaneous injection may cause local discomfort, hypoglycemia, hyperinsulinemia, and patient non-compliance. Therefore, oral delivery of insulin is more preferred. However, there is a low bioavailability due to insulin degradation by proteolytic enzymes and severe pH conditions along the gastrointestinal tract. In order to use the food-grade bacteria lactic acid bacteria (LAB) as oral delivery vehicles, a new and bioactive single-chain insulin (SCI-59) analog, containing the insulin B- and A-chains connected by an eight-residue linker (RSRGLPFR), was secretory expressed in Lactococcus lactis NZ3900 without using an antibiotic resistance gene and displayed onto the surface of various non-viable bacteria (NVBs) without genetic modification. Both the free SCI-59 and SCI-59 displayed on the surface of NVBs are biologically active as assayed by their ability to stimulate Akt signaling in differentiated 3T3-L1 adipocytes. Modification of the pH of the medium by NaOH addition at early time during induction can enhance the bioactivity of SCI-59. The C-terminal fused anchoring domain, three LysM repeats, does not affect the formation of disulfide bonds and/or the folding of SCI-59, and SCI-59 could be exposed properly and fully when SCI-59-3LysM bound to the surface of NVBs. Compared to the free form SCI-59, SCI-59 displayed on the surface of NVBs is more stable in simulate gastric juice. It may open new prospects for possible oral treatments of diabetes using live LAB secreting or NVBs carrying bioactive SCI analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams JP, Holder AL, Catchpole B (2014) Recombinant canine single chain insulin analogues: insulin receptor binding capacity and ability to stimulate glucose uptake. Vet J 202(3):436–442. doi:10.1016/j.tvjl.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  • Akbari V, Hendijani F, Feizi A, Varshosaz J, Fakhari Z, Morshedi S, Mostafavi SA (2016) Efficacy and safety of oral insulin compared to subcutaneous insulin: a systematic review and meta-analysis. J Endocrinol Investig 39(2):215–225. doi:10.1007/s40618-015-0326-3

    Article  CAS  Google Scholar 

  • Assoc AD (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36:S67–S74. doi:10.2337/dc13-S067

    Article  Google Scholar 

  • Bahey-El-Din M (2012) Lactococcus lactis-based vaccines from laboratory bench to human use: an overview. Vaccine 30(4):685–690. doi:10.1016/j.vaccine.2011.11.098

    Article  CAS  PubMed  Google Scholar 

  • Balcazar JL, De Blas I, Ruiz-Zarzuela I, Vendrell D, Calvo AC, Marquez I, Girones O, Muzquiz JL (2007) Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). Brit J Nutr 97(3):522–527. doi:10.1017/S0007114507432986

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Humaran LG, Aubry C, Motta JP, Deraison C, Steidler L, Vergnolle N, Chatel JM, Langella P (2013) Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16(3):278–283. doi:10.1016/j.mib.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Humaran LG, Langella P, Commissaire J, Gilbert S, Le Loir Y, L’Haridon R, Corthier G (2003) Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224(2):307–313

    Article  CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252–W258. doi:10.1093/nar/gku340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boettler T, Pagni PP, Jaffe R, Cheng Y, Zerhouni P, von Herrath M (2013) The clinical and immunological significance of GAD-specific autoantibody and 1-cell responses in type 1 diabetes. J Autoimmun 44:40–48. doi:10.1016/j.jaut.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  • Bonifacio E, Ziegler AG, Klingensmith G, Schober E, Bingley PJ, Rottenkolber M, Theil A, Eugster A, Puff R, Peplow C, Buettner F, Lange K, Hasford J, Achenbach P, Group P-PS (2015) Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes the pre-POINT randomized clinical trial. JAMA—J Am Med Assoc 313(15):1541–1549. doi:10.1001/jama.2015.2928

    Article  CAS  Google Scholar 

  • Cefalu WT (2004) Concept, strategies, and feasibility of noninvasive insulin delivery. Diabetes Care 27(1):239–246

    Article  PubMed  Google Scholar 

  • Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84(5):759–768

    Article  CAS  PubMed  Google Scholar 

  • Daniel C, Roussel Y, Kleerebezem M, Pot B (2011) Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends Biotechnol 29(10):499–508. doi:10.1016/j.tibtech.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  • Faria AMC, Weiner HL (2006) Oral tolerance: therapeutic implications for autoimmune diseases. Clin Dev Immunol 13(2–4):143–157. doi:10.1080/17402520600876804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg M, Gomez-Orellana I (2003) Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov 2(4):289–295. doi:10.1038/nrd1067

    Article  CAS  PubMed  Google Scholar 

  • Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531. doi:10.1093/nar/gki376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamman JH, Enslin GM, Kotze AF (2005) Oral delivery of peptide drugs—barriers and developments. BioDrugs 19(3):165–177. doi:10.2165/00063030-200519030-00003

    Article  CAS  PubMed  Google Scholar 

  • Hancock WW, Polanski M, Zhang J, Blogg N, Weiner HL (1995) Suppression of insulitis in non-obese diabetic (NOD) mice by oral insulin administration is associated with selective expression of interleukin-4 and -10, transforming growth factor-beta, and prostaglandin-E. Am J Pathol 147(5):1193–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison LC (1992) Islet cell antigens in insulin-dependent diabetes: Pandora’s box revisited. Immunol Today 13(9):348–352. doi:10.1016/0167-5699(92)90170-C

    Article  CAS  PubMed  Google Scholar 

  • Heine SJ, Franco-Mahecha OL, Chen XT, Choudhari S, Blackwelder WC, van Roosmalen ML, Leenhouts K, Picking WL, Pasetti MF (2015) Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice. Immunol Cell Biol 93(7):641–652. doi:10.1038/icb.2015.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homann D, Dyrberg T, Petersen J, Oldstone MBA, von Herrath MG (1999) Insulin in oral immune “tolerance”: a one-amino acid change in the B chain makes the difference. J Immunol 163(4):1833–1838

    CAS  PubMed  Google Scholar 

  • Hua QX (2010) Insulin: a small protein with a long journey. Protein Cell 1(6):537–551. doi:10.1007/s13238-010-0069-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua QX, Nakagawa SH, Jia W, Huang K, Phillips NB, Hu SQ, Weiss MA (2008) Design of an active ultrastable single-chain insulin analog—synthesis, structure, and therapeutic implications. J Biol Chem 283(21):14703–14716. doi:10.1074/jbc.M800313200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang ZY, Zhou QL, Coleman KA, Chouinard M, Boese Q, Czech MP (2003) Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing. P Natl Acad Sci USA 100(13):7569–7574. doi:10.1073/pnas.1332633100

    Article  CAS  Google Scholar 

  • Kalra S, Kalra B, Agrawal N (2010) Oral insulin. Diabetol Metab Syndr 2. doi:10.1186/1758-5996-2-66

    Google Scholar 

  • Keijzer C, Haijema BJ, Meijerhof T, Voorn P, de Haan A, Leenhouts K, van Roosmalen ML, van Eden W, Broere F (2014) Inactivated influenza vaccine adjuvanted with bacterium-like particles induce systemic and mucosal influenza A virus specific T-cell and B-cell responses after nasal administration in a TLR2 dependent fashion. Vaccine 32(24):2904–2910. doi:10.1016/j.vaccine.2014.02.019

    Article  CAS  PubMed  Google Scholar 

  • Khafagy ES, Morishita M, Onuki Y, Takayama K (2007) Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliver Rev 59(15):1521–1546. doi:10.1016/j.addr.2007.08.019

    Article  CAS  Google Scholar 

  • Klijn N, Weerkamp AH, Devos WM (1995) Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal-tract. Appl Environ Microb 61(7):2771–2774

    CAS  Google Scholar 

  • Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production. Microb Cell Factories 4(1):2. doi:10.1186/1475-2859-4-2

    Article  Google Scholar 

  • Ma YJ, Liu JJ, Hou J, Dong YK, Lu Y, Jin L, Cao R, Li TM, Wu J (2014) Oral Administration of Recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PLoS One 9(8):e105701. doi:10.1371/journal.pone.0105701

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao R, Wu D, Wang Y (2016a) Surface display on lactic acid bacteria without genetic modification: strategies and applications. Appl Microbiol Biotechnol 100(22):9407–9421. doi:10.1007/s00253-016-7842-8

    Article  CAS  PubMed  Google Scholar 

  • Mao RF, Zhou KP, Han ZW, Wang YF (2016b) Subtilisin QK-2: secretory expression in Lactococcus lactis and surface display onto gram-positive enhancer matrix (GEM) particles. Microb Cell Factories 15:80. doi:10.1186/s12934-016-0478-7

    Article  Google Scholar 

  • Michael JG (1989) The role of digestive enzymes in orally induced immune tolerance. Immunol Investig 18(9–10):1049–1054. doi:10.3109/08820138909030606

    Article  CAS  Google Scholar 

  • Michon C, Langella P, Eijsink VGH, Mathiesen G, Chatel JM (2016) Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Factories 15:70. doi:10.1186/s12934-016-0468-9

    Article  CAS  Google Scholar 

  • Ng DTW, Sarkar CA (2011) Nisin-inducible secretion of a biologically active single-chain insulin analog by Lactococcus lactis NZ9000. Biotechnol Bioeng 108(8):1987–1996. doi:10.1002/bit.23130

    Article  CAS  PubMed  Google Scholar 

  • Owens DR (2002) New horizons—alternative routes for insulin therapy. Nat Rev Drug Discov 1(7):529–540. doi:10.1038/nrd836

    Article  CAS  PubMed  Google Scholar 

  • Peterbauer C, Maischberger T, Haltrich D (2011) Food-grade gene expression in lactic acid bacteria. Biotechnol J 6(9):1147–1161. doi:10.1002/biot.201100034

    Article  CAS  PubMed  Google Scholar 

  • Polanski M, Melican NS, Zhang J, Weiner HL (1997) Oral administration of the immunodominant B-chain of insulin reduces diabetes in a co-transfer model of diabetes in the NOD mouse and is associated with a switch from Th1 to Th2 cytokines. J Autoimmun 10(4):339–346. doi:10.1006/jaut.1997.0148

    Article  CAS  PubMed  Google Scholar 

  • Rajpal G, Liu M, Zhang Y, Arvan P (2009) Single-chain insulins as receptor agonists. Mol Endocrinol 23(5):679–688. doi:10.1210/me.2008-0349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez K, Ditamo Y, Rodriguez L, Picking WL, van Roosmalen ML, Leenhouts K, Pasetti MF (2010) Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection. Mucosal Immunol 3(2):159–171. doi:10.1038/mi.2009.131

    Article  CAS  PubMed  Google Scholar 

  • Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, Van Huynegem K, Steidler L, Caluwaerts S, Demetter P, Wasserfall CH, Atkinson MA, Dotta F, Rottiers P, Van Belle TL, Mathieu C (2014) Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63(8):2876–2887. doi:10.2337/db13-1236

    Article  CAS  PubMed  Google Scholar 

  • Satake S, Moore MC, Igawa K, Converse M, Farmer B, Neal DW, Cherrington AD (2002) Direct and indirect effects of insulin on glucose uptake and storage by the liver. Diabetes 51(6):1663–1671. doi:10.2337/diabetes.51.6.1663

    Article  CAS  PubMed  Google Scholar 

  • Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16–22. doi:10.1038/nprot.2006.4

    Article  PubMed  Google Scholar 

  • Sheng JZ, Ling PX, Wang FS (2015) Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis. J Ind Microbiol Biot 42(2):197–206. doi:10.1007/s10295-014-1555-8

    Article  CAS  Google Scholar 

  • Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21(7):785–789. doi:10.1038/nbt840

    Article  CAS  PubMed  Google Scholar 

  • Takiishi T, Korf H, Van Belle TL, Robert S, Grieco FA, Caluwaerts S, Galleri L, Spagnuolo I, Steidler L, Van Huynegem K, Demetter P, Wasserfall C, Atkinson MA, Dotta F, Rottiers P, Gysemans C, Mathieu C (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122(5):1717–1725. doi:10.1172/JCI60530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunis MC, Dawod B, Carson KR, Veinotte LL, Marshall JS (2015) Toll-like receptor 2 activators modulate oral tolerance in mice. Clin Exp Allergy 45(11):1690–1702. doi:10.1111/cea.12605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Asseldonk M, Rutten G, Oteman M, Siezen RJ, de Vos WM, Simons G (1990) Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95(1):155–160

    Article  PubMed  Google Scholar 

  • Von Herrath MG, Dyrberg T, Oldstone MBA (1996) Oral insulin treatment suppresses virus-induced antigen-specific destruction of beta cells and prevents autoimmune diabetes in transgenic mice. J Clin Invest 98(6):1324–1331. doi:10.1172/Jci118919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wajchenberg BL (2007) Beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 28(2):187–218. doi:10.1210/er.2006-0038

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  • Wong TW (2010) Design of oral insulin delivery systems. J Drug Target 18(2):79–92. doi:10.3109/10611860903302815

    Article  CAS  PubMed  Google Scholar 

  • Yogendraji KA, Lokwani P, Singh N (2011) Newer strategies for insulin delivery. Int J Res Ayurveda Pharm 2(6):1717–1721

    Google Scholar 

  • Zadravec P, Strukelj B, Berlec A (2015) Heterologous surface display on lactic acid bacteria: non-GMO alternative? Bioengineered 6(3):179–183. doi:10.1080/21655979.2015.1040956

    Article  PubMed  PubMed Central  Google Scholar 

  • Zebisch K, Voigt V, Wabitsch M, Brandsch M (2012) Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 425(1):88–90. doi:10.1016/j.ab.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Nakayama M, Eisenbarth GS (2008) Insulin as an autoantigen in NOD/human diabetes. Curr Opin Immunol 20(1):111–118. doi:10.1016/j.coi.2007.11.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL (1991) Suppression of diabetes in nonobese diabetic mice by oral-administration of porcine insulin. P Natl Acad Sci USA 88(22):10252–10256. doi:10.1073/pnas.88.22.10252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (973 Program, NO. 2011CB504800), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (NO. BS2014YY042), and China Postdoctoral Science Foundation Funded Project (NO. 2016M600520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefu Wang.

Ethics declarations

Ethical approval

This article does not contain studies with human participants or animals performed by any of authors.

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, R., Wu, D., Hu, S. et al. Secretory expression and surface display of a new and biologically active single-chain insulin (SCI-59) analog by lactic acid bacteria. Appl Microbiol Biotechnol 101, 3259–3271 (2017). https://doi.org/10.1007/s00253-017-8125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8125-8

Keywords

Navigation