Skip to main content
Log in

Recombinant expression and characterization of a l-amino acid oxidase from the fungus Rhizoctonia solani

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

l-Amino acid oxidases (L-AAOs) catalyze the oxidative deamination of l-amino acids to the corresponding α-keto acids, ammonia, and hydrogen peroxide. l-AAOs are homodimeric enzymes with FAD as a non-covalently bound cofactor. They are of potential interest for biotechnological applications. However, heterologous expression has not succeeded in producing large quantities of active recombinant l-AAOs with a broad substrate spectrum so far. Here, we report the heterologous expression of an active l-AAO from the fungus Rhizoctonia solani in Escherichia coli as a fusion protein with maltose-binding protein (MBP) as a solubility tag. After purification, it was possible to remove the MBP-tag proteolytically without influencing the enzyme activity. MBP-rsLAAO1 and 9His-rsLAAO1 converted basic and large hydrophobic l-amino acids as well as methyl esters of these l-amino acids. The progress of the conversion of l-phenylalanine and l-leucine into the corresponding α-keto acids was determined by HPLC and 1H-NMR analysis of reaction mixtures, respectively. Enzymatic activity was stimulated 50–100-fold by SDS treatment. K m values ranging from 0.9–10 mM and v max values from 3 to 10 U mg−1 were determined after SDS activation of 9His-rsLAAO1 for the best substrates. The enzyme displayed a broad pH optimum between pH 7.0 and 9.5. In summary, a successful overexpression of recombinant l-AAO in E. coli was established that results in a promising enzymatic activity and a broad substrate spectrum for biotechnological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bender AE, Krebs HA (1950) The oxidation of various synthetic alpha-amino-acids by mammalian D-amino-acid oxidase, L-amino-acid oxidase of cobra venom and the L-amino-acid and D-amino-acid oxidases of Neurospora-crassa. Biochem J 46:210–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bifulco D, Pollegioni L, Tessaro D, Servi S, Molla G (2013) A thermostable L-aspartate oxidase: a new tool for biotechnological applications. Appl Microbiol Biotechnol 97:7285–7295. doi:10.1007/s00253-013-4688-1

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  • Cheng CH, Yang CA, Liu SY, Lo CT, Huang HC, Liao FC, Peng KC (2011) Cloning of a novel L-amino acid oxidase from Trichoderma harzianum ETS 323 and bioactivity analysis of overexpressed L-amino acid oxidase. J Agric Food Chem 59:9142–9149. doi:10.1021/jf201598z

    Article  CAS  PubMed  Google Scholar 

  • Cubeta MA, Thomas E, Dean RA, Jabaji S, Neate SM, Tavantzis S, Toda T, Vilgalys R, Bharathan N, Fedorova-Abrams N, Pakala SB, Pakala SM, Zafar N, Joardar V, Losada L, Nierman WC (2014) Draft genome sequence of the plant-pathogenic soil fungus Rhizoctonia solani anastomosis group 3 strain Rhs1AP. Genome announcements 2. doi:10.1128/genomeA.01072-14

  • Espin JC, Wichers HJ (1999) Activation of a latent mushroom (Agaricus bisporus) tyrosinase isoform by sodium dodecyl sulfate (SDS). Kinetic properties of the SDS-activated isoform. J Agric Food Chem 47:3518–3525. doi:10.1021/jf981275p

    Article  CAS  PubMed  Google Scholar 

  • Faust A, Niefind K, Hummel W, Schomburg D (2007) The structure of a bacterial (L)-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. J Mol Biol 367:234–248. doi:10.1016/j.jmb.2006.11.071

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Chernikova TN, Timmis KN, Golyshin PN (2004) Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Appl Environ Microbiol 70:4499–4504. doi:10.1128/aem.70.8.4499-4504.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Gorecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kuees U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Duenas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, John FS, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719. doi:10.1126/science.1221748

    Article  CAS  PubMed  Google Scholar 

  • Geueke B, Hummel W (2002) A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzym Microb Technol 31:77–87. doi:10.1016/s0141-0229(02)00072-8

    Article  CAS  Google Scholar 

  • Geueke B, Hummel W (2003) Heterologous expression of Rhodococcus opacus L-amino acid oxidase in Streptomyces lividans. Protein Expr Purif 28:303–309. doi:10.1016/s1046-5928(02)00701-5

    Article  CAS  PubMed  Google Scholar 

  • Hanson RL, Bembenek KS, Patel RN, Szarka LJ (1992) Transformation of N-epsilon-CBZ-L-lysine to CBZ-L-oxylysine using L-amino-acid oxidase from Providencia-alcalifaciens and L-2-hydroxy-isocaproate dehydrogenase from Lactobacillus-confusus. Appl Microbiol Biotechnol 37:599–603

    Article  CAS  PubMed  Google Scholar 

  • Hossain GS, Li J, Shin H-d, Du G, Liu L, Chen J (2014) L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol 98:1507–1515. doi:10.1007/s00253-013-5444-2

    Article  CAS  PubMed  Google Scholar 

  • Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai K, Hashiguchi K, Takahashi H, Kasai A, Takeda S, Nakano M, Ishikawa T, Nakamura T, Miura T (2015) Recombinant production and evaluation of an antibacterial l-amino acid oxidase derived from flounder Platichthys stellatus. Appl Microbiol Biotechnol 99:6693–6703. doi:10.1007/s00253-015-6428-1

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Hossain GS, Shin HD, Li JH, GC D, Chen J (2013) One-step production of alpha-ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis. J Biotechnol 164:97–104. doi:10.1016/j.jbiotec.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  • Moore BM, Flurkey WH (1990) Sodium dodecyl-sulfate activation of a plant polyphenoloxidase - effect of sodium dodecyl-sulfate on enzymatic and physical characteristics of purified broad bean polyphenoloxidase. J Biol Chem 265:4982–4988

    CAS  PubMed  Google Scholar 

  • Moustafa IM, Foster S, Lyubimov AY, Vrielink A (2006) Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. J Mol Biol 364:991–1002. doi:10.1016/j.jmb.2006.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35. doi:10.1016/s0968-0004(98)01336-x

    Article  CAS  PubMed  Google Scholar 

  • Nuutinen JT, Marttinen E, Soliymani R, Hilden K, Timonen S (2012) L-Amino acid oxidase of the fungus Hebeloma cylindrosporum displays substrate preference towards glutamate. Microbiology 158:272–283. doi:10.1099/mic.0.054486-0

    Article  CAS  PubMed  Google Scholar 

  • Nuutinen JT, Timonen S (2008) Identification of nitrogen mineralization enzymes, L-amino acid oxidases, from the ectomycorrhizal fungi Hebeloma spp. and Laccaria bicolor. Mycol Res 112:1453–1464. doi:10.1016/j.mycres.2008.06.023

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8:785–786. doi:10.1038/nmeth.1701

    Article  CAS  Google Scholar 

  • Pollegioni L, Molla G (2011) New biotech applications from evolved D-amino acid oxidases. Trends Biotechnol 29:276–283. doi:10.1016/j.tibtech.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  • Pollegioni L, Motta P, Molla G (2013) L-Amino acid oxidase as biocatalyst: a dream too far ? Appl Microbiol Biotechnol 97:9323–9341

    Article  CAS  PubMed  Google Scholar 

  • Tan NH, Saifuddin MN (1991) Substrate-specificity of king cobra (Ophiophagus-hannah) venom L-amino-acid oxidase. Int J Biochem 23:323–327

    Article  CAS  PubMed  Google Scholar 

  • Tang JD, Perkins AD, Sonstegard TS, Schroeder SG, Burgess SC, Diehl SV (2012) Short-read sequencing for genomic analysis of the brown rot fungus Fibroporia radiculosa. Appl Environ Microbiol 78:2272–2281. doi:10.1128/aem.06745-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro Y, Rodriguez GM, Atsumi S (2015) 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. J Ind Microbiol Biotechnol 42:361–373. doi:10.1007/s10295-014-1547-8

    Article  CAS  PubMed  Google Scholar 

  • Thayer PS, Horowitz NH (1951) The L-amino acid oxidase of Neurospora. J Biol Chem 192:755–767

    CAS  PubMed  Google Scholar 

  • Tong HC, Chen W, Shi WY, Qi FX, Dong XZ (2008) SO-LAAO, a novel L-amino acid oxidase that enables Streptococcus oligofermentans to outcompete Streptococcus mutans by generating H2O2 from peptone. J Bacteriol 190:4716–4721. doi:10.1128/jb.00363-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Souza TACB, Abrego JRB, Betzel C, Murakami MT, Arni RK (2012) Structural insights into selectivity and cofactor binding in snake venom L-amino acid oxidases. Biochem Biophys Res Com 421:124–128. doi:10.1016/j.bbrc.2012.03.129

    Article  CAS  PubMed  Google Scholar 

  • Vanboven A, Tan PST, Konings WN (1988) Purification and characterization of a dipeptidase from Streptococcus-cremoris Wg2. Appl Environ Microbiol 54:43–49

    CAS  Google Scholar 

  • Whitby LG (1953) A new method for preparing flavin-adenine dinucleotide. Biochem J 54(3):437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenberg C, Triplett EL (1985) A detergent-activated tyrosinase from Xenopus-laevis .2. Detergent activation and binding. J Biol Chem 260:2542–2546

    Google Scholar 

  • Zhang HM, Teng M, Niu LW, Wang YB, Wang YZ, Liu Q, Huang QQ, Hao Q, Dong YH, Liu P (2004) Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell apoptosis-inducing activity from Agkistrodon halys pallas venom. Acta Crystallog Sect D 60:974–977. doi:10.1107/s0907444904000046

    Article  Google Scholar 

  • Zhou MJ, Diwu ZJ, PanchukVoloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168. doi:10.1006/abio.1997.2391

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Denise Weinberg and Thomas Geisler for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Fischer von Mollard.

Ethics declarations

Funding

This study was funded by Deutsche Forschungsgemeinschaft (grant number KO3580/4-1).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, K., Neumeister, K., Mix, A. et al. Recombinant expression and characterization of a l-amino acid oxidase from the fungus Rhizoctonia solani . Appl Microbiol Biotechnol 101, 2853–2864 (2017). https://doi.org/10.1007/s00253-016-8054-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8054-y

Keywords

Navigation