Skip to main content

Advertisement

Log in

2-Keto acids based biosynthesis pathways for renewable fuels and chemicals

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Global energy and environmental concerns have driven the development of biological chemical production from renewable sources. Biological processes using microorganisms are efficient and have been traditionally utilized to convert biomass (i.e., glucose) to useful chemicals such as amino acids. To produce desired fuels and chemicals with high yield and rate, metabolic pathways have been enhanced and expanded with metabolic engineering and synthetic biology approaches. 2-Keto acids, which are key intermediates in amino acid biosynthesis, can be converted to a wide range of chemicals. 2-Keto acid pathways were engineered in previous research efforts and these studies demonstrated that 2-keto acid pathways have high potential for novel metabolic routes with high productivity. In this review, we discuss recently developed 2-keto acid-based pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abe F, Horikoshi K (2005) Enhanced production of isoamyl alcohol and isoamyl acetate by ubiquitination-deficient Saccharomyces cerevisiae mutants. Cell Mol Biol Lett 10(3):383–388

    CAS  PubMed  Google Scholar 

  2. Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33(3):233–271. doi:10.1016/j.pecs.2006.08.003

    Article  CAS  Google Scholar 

  3. Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol 185(1):204–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89. doi:10.1038/nature06450

    Article  CAS  PubMed  Google Scholar 

  5. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180. doi:10.1038/nbt.1586

    Article  CAS  PubMed  Google Scholar 

  6. Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74(24):7802–7808. doi:10.1128/AEM.02046-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85(3):651–657. doi:10.1007/s00253-009-2085-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Atsumi S, Wu TY, Machado IMP, Huang W, Chen P, Pellegrini M, Liao JC (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449. doi:10.1038/msb.2010.98

    Article  PubMed Central  PubMed  Google Scholar 

  9. Baez A, Cho KM, Liao JC (2011) High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 90(5):1681–1690. doi:10.1007/s00253-011-3173-y

    Article  CAS  PubMed  Google Scholar 

  10. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13(3):345–352. doi:10.1016/j.ymben.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  11. Besecke S, Schroeder G, Siegert H, Gaenzler W (1984) Method for making isobutyric acid. US Patent 4452999, Mar 12, 1985

  12. Bogosian G, Violand BN, Dorward-King EJ, Workman WE, Jung PE, Kane JF (1989) Biosynthesis and incorporation into protein of norleucine by Escherichia coli. J Biol Chem 264(1):531–539

    CAS  PubMed  Google Scholar 

  13. Bueding E, Yale HW (1951) Production of alpha-methylbutyric acid by bacteria-free Ascaris lumbricoides. J Biol Chem 193(1):411–423

    CAS  PubMed  Google Scholar 

  14. Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81(1):89–98. doi:10.1007/s00253-008-1631-y

    Article  CAS  PubMed  Google Scholar 

  15. Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, Kaipa P, Karthikeyan AS, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Paley S, Popescu L, Pujar A, Shearer AG, Zhang P, Karp PD (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38(Database issue):D473–D479. doi:10.1093/nar/gkp875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chuck CJ, Donnelly J (2014) The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Appl Energy 118:83–91. doi:10.1016/j.apenergy.2013.12.019

    Article  CAS  Google Scholar 

  17. Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86(4):1155–1164. doi:10.1007/s00253-009-2401-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Connor MR, Liao JC (2008) Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Microbiol Biotechnol 74(18):5769–5775. doi:10.1128/AEM.00468-08

    CAS  Google Scholar 

  19. National Research Council (2010) Advancing the science of climate change. The National Academies Press, Washington

    Google Scholar 

  20. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355–359. doi:10.1038/nature10333

    Article  CAS  PubMed  Google Scholar 

  21. Desai SH, Atsumi S (2013) Photosynthetic approaches to chemical biotechnology. Curr Opin Biotechnol 24(6):1031–1036. doi:10.1016/j.copbio.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  22. Desai SH, Rabinovitch-Deere CA, Tashiro Y, Atsumi S (2014) Isobutanol production from cellobiose in Escherichia coli. Appl Microbiol Biotechnol 98(8):3727–3736. doi:10.1007/s00253-013-5504-7

    Article  CAS  PubMed  Google Scholar 

  23. Dhande YK, Xiong M, Zhang K (2012) Production of C5 carboxylic acids in engineered Escherichia coli. Process Biochem 47(12):1965–1971. doi:10.1016/j.procbio.2012.07.005

    Article  CAS  Google Scholar 

  24. Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272(43):26871–26878

    Article  CAS  PubMed  Google Scholar 

  25. Dow (2008) Product safety assessment: isopentanoic acid. The Dow Chemical Company

  26. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759. doi:10.1038/nbt.1557

    Article  CAS  PubMed  Google Scholar 

  27. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(Web Server issue):W116–W118. doi:10.1093/nar/gkl282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ehrlich F (1907) Concerning the conditions for fusel oil formation and concerning its connection with the protein formation of yeast. Ber Dtsch Chem Ges 40:1027–1047. doi:10.1002/cber.190704001156

    Article  CAS  Google Scholar 

  29. Escapa IF, Garcia JL, Buhler B, Blank LM, Prieto MA (2012) The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Environ Microbiol 14(4):1049–1063. doi:10.1111/j.1462-2920.2011.02684.x

    Article  CAS  PubMed  Google Scholar 

  30. Fang HH, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82(1):87–93

    Article  CAS  PubMed  Google Scholar 

  31. Gollop N, Damri B, Chipman DM, Barak Z (1990) Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms. J Bacteriol 172(6):3444–3449

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Gusyatiner MM, Lunts MG, Koslov YI, Ivanovskaya LV, Voroshilova EB (2002) DNA coding for mutant isopropylmalate synthase l-leucine producing microorganism and method for producing l-leucine. USA Patent 6,403,342, Jun. 11, 2002

  33. Haigler BE, Spain JC (1993) Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl Environ Microbiol 59(7):2239–2243

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77(8):2727–2733. doi:10.1128/AEM.02454-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Howell DM, Xu HM, White RH (1999) (R)-citramalate synthase in methanogenic archaea. J Bacteriol 181(1):331–333

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Industrial Market Research, Data, Analysis and Reports IAL Consultants. http://www.ialconsultants.com/. Accessed Nov. 4. 2014

  37. Iwasaki T, Maegawa Y, Ohshima T, Mashima K (2012) Esterification. Kirk-Othmer Encycl Chem Technol. doi:10.1002/0471238961.0519200501191201.a01.pub2

    Google Scholar 

  38. Jambunathan P, Zhang K (2014) Novel pathways and products from 2-keto acids. Curr Opin Biotechnol 29C:1–7. doi:10.1016/j.copbio.2014.01.008

    Article  Google Scholar 

  39. Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152(Pt 9):2529–2536. doi:10.1099/mic.0.29028-0

    Article  CAS  PubMed  Google Scholar 

  40. Kisumi M, Sugiura M, Chibata I (1976) Biosynthesis of norvaline, norleucine, and homoisoleucine in Serratia marcescens. J Biochem 80(2):333–339

    CAS  PubMed  Google Scholar 

  41. Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma—a review. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  42. Lang K, Zierow J, Buehler K, Schmid A (2014) Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites. Microb Cell Fact 13:2. doi:10.1186/1475-2859-13-2

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lee SY, Kim HU, Park JH, Park JM, Kim TY (2009) Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov Today 14(1–2):78–88. doi:10.1016/j.drudis.2008.08.004

    Article  CAS  PubMed  Google Scholar 

  44. Li H, Cann AF, Liao JC (2010) Biofuels: biomolecular Engineering Fundamentals and Advances. Annu Rev Chem Biomol Eng 1:19–36. doi:10.1146/annurev-chembioeng-073009-100938

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335(6076):1596. doi:10.1126/science.1217643

    Article  CAS  PubMed  Google Scholar 

  46. Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS (2006) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23(9):641–659. doi:10.1002/yea.1382

    Article  CAS  PubMed  Google Scholar 

  47. Lin PP, Rabe KS, Takasumi JL, Kadisch M, Arnold FH, Liao JC (2014) Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng 24:1–8. doi:10.1016/j.ymben.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  48. Liu X, Zhu Y, Yang ST (2006) Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb Technol 38(3–4):521–528

    Article  CAS  Google Scholar 

  49. Liu YJ, Lotero E, Goodwin JG (2006) Effect of water on sulfuric acid catalyzed esterification. J Mol Catal a-Chem 245(1–2):132–140. doi:10.1016/j.molcata.2005.09.049

    Article  CAS  Google Scholar 

  50. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25(6):1203–1210. doi:10.1093/nar/25.6.1203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Marcheschi RJ, Li H, Zhang K, Noey EL, Kim S, Chaubey A, Houk KN, Liao JC (2012) A synthetic recursive “+1” pathway for carbon chain elongation. ACS Chem Biol 7(4):689–697. doi:10.1021/cb200313e

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci USA 110(36):14592–14597. doi:10.1073/pnas.1218447110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Mooney BP, Miernyk JA, Randall DD (2002) The complex fate of alpha-ketoacids. Annu Rev Plant Biol 53:357–375. doi:10.1146/annurev.arplant.53.100301.135251

    Article  CAS  PubMed  Google Scholar 

  54. Organisation for Economic Cooperation and Development Existing Chemicals Database http://www.oecd.org/env/hazard/data. Accessed Nov. 3. 2014

  55. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328. doi:10.1038/nature11478

    Article  CAS  PubMed  Google Scholar 

  56. Rabinovitch-Deere CA, Oliver JW, Rodriguez GM, Atsumi S (2013) Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 113(7):4611–4632. doi:10.1021/cr300361t

    Article  CAS  PubMed  Google Scholar 

  57. Raff DK (2013) Butanals. Ullman’s Encyc Ind Chem. doi:10.1002/14356007.a04_447.pub2

    Google Scholar 

  58. Rodriguez GM, Atsumi S (2012) Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Fact 11:90. doi:10.1186/1475-2859-11-90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 25:227–237. doi:10.1016/j.ymben.2014.07.012

    Article  CAS  PubMed  Google Scholar 

  60. Rodriguez GM, Tashiro Y, Atsumi S (2014) Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10(4):259–265. doi:10.1038/nchembio.1476

    Article  CAS  PubMed  Google Scholar 

  61. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562. doi:10.1126/science.1187936

    Article  CAS  PubMed  Google Scholar 

  62. Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink GJ, Boonstra J, Dijkhuizen L (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70(2):237–246. doi:10.1007/s00253-005-0070-2

    Article  CAS  PubMed  Google Scholar 

  63. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished. Energy Policy 37(1):181–189

    Article  Google Scholar 

  64. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905–2915. doi:10.1128/AEM.03034-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10(6):312–320. doi:10.1016/j.ymben.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  66. Shen CR, Liao JC (2013) Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. Metab Eng 17:12–22. doi:10.1016/j.ymben.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  67. Shiio I, Nakamori S, Sano K (1971) Fermentative production of l-threonine. US Patent 3580810, May 25

  68. Sorrell S, Speirs J, Bentley J, Miller R, Thompson R (2012) Shaping the global oil peak: a review of the evidence on field sizes, reserve growth, decline rates and depletion rates. Energy 37:709–724

    Article  Google Scholar 

  69. Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE (1991) Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol 57(11):3200–3205

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562. doi:10.1038/nature08721

    Article  CAS  PubMed  Google Scholar 

  71. Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1(11):514–525. doi:10.1021/sb300094q

    Article  CAS  PubMed  Google Scholar 

  72. Tao L, Tan ECD, McCormick R, Zhang M, Aden A, He X, Zigler BT (2014) Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol. Biofuel Bioprod Bior 8(1):30–48. doi:10.1002/Bbb.1431

    Article  CAS  Google Scholar 

  73. Torella JP, Ford TJ, Kim SN, Chen AM, Way JC, Silver PA (2013) Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc Natl Acad Sci USA 110(28):11290–11295. doi:10.1073/pnas.1307129110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Verstrepen KJ, Van Laere SD, Vanderhaegen BM, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69(9):5228–5237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Voet D, Voet JG, Pratt CW (1999) Fundamentals of Biochemistry. Wiley, NY

    Google Scholar 

  76. Wackett LP (2003) Pseudomonas putida–a versatile biocatalyst. Nat Biotechnol 21(2):136–138. doi:10.1038/nbt0203-136

    Article  CAS  PubMed  Google Scholar 

  77. Xiong M, Deng J, Woodruff AP, Zhu M, Zhou J, Park SW, Li H, Fu Y, Zhang K (2012) A bio-catalytic approach to aliphatic ketones. Sci Rep 2:311. doi:10.1038/srep00311

    Article  PubMed Central  PubMed  Google Scholar 

  78. Yoneda H, Tantillo DJ, Atsumi S (2014) Biological production of 2-butanone in Escherichia coli. ChemSusChem 7(1):92–95. doi:10.1002/cssc.201300853

    Article  CAS  PubMed  Google Scholar 

  79. Yonezawa T, Fushiki T (2002) Testing for taste and flavour of beer. Molecular methods of plant analysis, vol 21. Springer Berlin. doi:10.1007/978-3-662-04857-3_3

  80. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30(4):354–359. doi:10.1038/nbt.2149

    Article  CAS  PubMed  Google Scholar 

  81. Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105(52):20653–20658. doi:10.1073/pnas.0807157106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Zhang K, Woodruff AP, Xiong M, Zhou J, Dhande YK (2011) A synthetic metabolic pathway for production of the platform chemical isobutyric acid. ChemSusChem 4(8):1068–1070. doi:10.1002/cssc.201100045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by University of California–Davis startup fund and the Hellman fellowship to S.A. G.M.R. was supported by a US National Institutes of Health Biotechnology Training Grant Fellowship (T32-GM008799) and a Sloan Fellowship. Y.T. was supported by Japan Society for the Promotion of Science postdoctoral fellowship for research abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Atsumi.

Additional information

Special Issue: Metabolic Engineering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashiro, Y., Rodriguez, G.M. & Atsumi, S. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. J Ind Microbiol Biotechnol 42, 361–373 (2015). https://doi.org/10.1007/s10295-014-1547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1547-8

Keywords

Navigation