Skip to main content
Log in

Regioselective hydroxylation of cholecalciferol, cholesterol and other sterol derivatives by steroid C25 dehydrogenase

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Steroid C25 dehydrogenase (S25DH) from Sterolibacterium denitrificans Chol-1S is a molybdenum oxidoreductase belonging to the so-called ethylbenzene dehydrogenase (EBDH)-like subclass of DMSO reductases capable of the regioselective hydroxylation of cholesterol or cholecalciferol to 25-hydroxy products. Both products are important biologically active molecules: 25-hydroxycholesterol is responsible for a complex regulatory function in the immunological system, while 25-hydroxycholecalciferol (calcifediol) is the activated form of vitamin D3 used in the treatment of rickets and other calcium disorders. Studies revealed that the optimal enzymatic synthesis proceeds in fed-batch reactors under anaerobic conditions, with 6–9 % (w/v) 2-hydroxypropyl-β-cyclodextrin as a solubilizer and 1.25–5 % (v/v) 2-methoxyethanol as an organic co-solvent, both adjusted to the substrate type, and 8–15 mM K3[Fe(CN)6] as an electron acceptor. Such thorough optimization of the reaction conditions resulted in high product concentrations: 0.8 g/L for 25-hydroxycholesterol, 1.4 g/L for calcifediol and 2.2 g/L for 25-hydroxy-3-ketosterols. Although the purification protocol yields approximately 2.3 mg of pure S25DH from 30 g of wet cell mass (specific activity of 14 nmol min−1 mg−1), the non-purified crude extract or enzyme preparation can be readily used for the regioselective hydroxylation of both cholesterol and cholecalciferol. On the other hand, pure S25DH can be efficiently immobilized either on powder or a monolithic silica support functionalized with an organic linker providing NH2 groups for enzyme covalent binding. Although such immobilization reduced the enzyme initial activity more than twofold it extended S25DH catalytic lifetime under working conditions at least 3.5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ban JG, Kim HB, Lee MJ, Anbu P, Kim ES (2014) Identification of a vitamin D3-specific hydroxylase genes through actinomycetes genome mining. J Ind Microbiol Biotechnol 41(2):265–273. doi:10.1007/s10295-013-1336-9

    Article  CAS  PubMed  Google Scholar 

  • Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang GS, Russell DW (2009) 25-hydroxycholesterol secreted by macrophages in response to toll-like receptor activation suppresses immunoglobulin a production. Proc Natl Acad Sci U S A 106(39):16764–16769. doi:10.1073/pnas.0909142106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beste L, Nahar N, Dalman K, Fujioka S, Jonsson L, Dutta PC, Sitbon F (2011) Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism. Plant Physiol 157(1):426–440. doi:10.1104/pp.110.171199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bildziukevich U, Rarova L, Saman D, Havlicek L, Drasar P, Wimmer Z (2013) Amides derived from heteroaromatic amines and selected steryl hemiesters. Steroids 78(14):1347–1352

    Article  CAS  PubMed  Google Scholar 

  • Bischoff-Ferrari HA, Dawson-Hughes B, Stöcklin E, Sidelnikov E, Willett WC, Edel JO, Stähelin HB, Wolfram S, Jetter A, Schwager J, Henschkowski J, von Eckardstein A, Egli A (2012) Oral supplementation with 25(OH)D3 versus vitamin D3: effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. J Bone Miner Res 27(1):160–169. doi:10.1002/jbmr.551

    Article  CAS  PubMed  Google Scholar 

  • Brandi ML, Minisola S (2013) Calcidiol [25(OH)D3]: from diagnostic marker to therapeutical agent. Curr Med Res Opin 29(11):1565–1572. doi:10.1185/03007995.2013.838549

    Article  CAS  PubMed  Google Scholar 

  • Brixius-Anderko S, Schiffer L, Hannemann F, Janocha B, Bernhardt R (2015) A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol. Microb Cell Factories 14:135. doi:10.1186/s12934-015-0333-2

    Article  Google Scholar 

  • Campbell JA, Squires DM, Babcock JC (1969) Synthesis of 25-hydroxycholecalciferol biologically effective metabolite of vitamin D3. Steroids 13(5):567–577

    Article  CAS  PubMed  Google Scholar 

  • Carvalho JF, Silva MM, Moreira JN, Simoes S, Sa e Melo ML (2010) Sterols as anticancer agents: synthesis of ring-B oxygenated steroids, cytotoxic profile, and comprehensive SAR analysis. J Med Chem 53(21):7632–7638. doi:10.1021/jm1007769

    Article  CAS  PubMed  Google Scholar 

  • Chiang YR, Ismail W, Muller M, Fuchs G (2007) Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem 282(18):13240–13249. doi:10.1074/jbc.M610963200

    Article  CAS  PubMed  Google Scholar 

  • Chiang YR, Ismail W, Gallien S, Heintz D, Van Dorsselaer A, Fuchs G (2008a) Cholest-4-en-3-one-Delta(1)-dehydrogenase, a flavoprotein catalyzing the second step in anoxic cholesterol metabolism. Appl Environ Microbiol 74(1):107–113

    Article  CAS  PubMed  Google Scholar 

  • Chiang YR, Ismail W, Heintz D, Schaeffer C, Van Dorsselaer A, Fuchs G (2008b) Study of anoxic and oxic cholesterol metabolism by Sterolibacterium denitrificans. J Bacteriol 190(3):905–914. doi:10.1128/jb.01525-07

    Article  CAS  PubMed  Google Scholar 

  • Czarny MR, Nelson JA, Spencer TA (1977) Synthesis of 4-Spiro[Cyclopropanecholestan-3beta-Ol. J Org Chem 42(17):2941–2944. doi:10.1021/jo00437a041

    Article  CAS  Google Scholar 

  • Decaprio J, Yun J, Javitt NB (1992) Bile-acid and sterol solubilization in 2-hydroxypropyl-Beta-cyclodextrin. J Lipid Res 33(3):441–443

    CAS  Google Scholar 

  • Dermer J, Fuchs G (2012) Molybdoenzyme that catalyzes the anaerobic hydroxylation of a tertiary carbon atom in the side chain of cholesterol. J Biol Chem 287(44):36905–36916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42(15):6437–6474. doi:10.1039/C3CS35506C

    Article  CAS  PubMed  Google Scholar 

  • Donova MV (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Micro 43(1):1–14. doi:10.1134/S0003683807010012

    Article  CAS  Google Scholar 

  • Fujii T, Fujii Y, Machida K, Ochiai A, Ito M (2009) Efficient biotransformations using Escherichia coli with tolC acrAB mutations expressing cytochrome P450 genes. Biosci Biotechnol Biochem 73(4):805–810. doi:10.1271/bbb.80627

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Szaleniec M, Sünwoldt K, Boll M (2016) Ethylbenzene dehydrogenase and related molybdenum enzymes involved in oxygen-independent alkyl chain hydroxylation. J Mol Microbiol Biotechnol 26(1–3):45–62

    Article  CAS  PubMed  Google Scholar 

  • Hille R, Hall J, Basu P (2014) The mononuclear molybdenum enzymes. Chem Rev 114(7):3963–4038. doi:10.1021/cr400443z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland HL (1992) Organic synthesis with oxidative enzymes. Wiley-VCH, New York

    Google Scholar 

  • Iida T, Shinohara T, Goto J, Nambara T, Chang FC (1988) A facile one-step synthesis of delta-1,4-3-keto bile-acid esters by iodoxybenzene and benzeneselenic anhydride. J Lipid Res 29(8):1097–1101

    CAS  PubMed  Google Scholar 

  • Jetter A, Egli A, Dawson-Hughes B, Staehelin HB, Stoecklin E, Goessl R, Henschkowski J, Bischoff-Ferrari HA (2014) Pharmacokinetics of oral vitamin D(3) and calcifediol. Bone 59:14–19

    Article  CAS  PubMed  Google Scholar 

  • Kang D-J, Lee H-S, Park J-T, Bang JS, Hong S-K, Kim T-Y (2006) Optimization of culture conditions for the bioconversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 using Pseudonocardia autotrophica ID 9302. Biotechnol Bioproc E 11(5):408–413. doi:10.1007/bf02932307

    Article  CAS  Google Scholar 

  • Kang DJ, Im JH, Kang JH, Kim KH (2015) Bioconversion of vitamin D3 to calcifediol by using resting cells of Pseudonocardia sp. Biotechnol Lett 37(9):1895–1904. doi:10.1007/s10529-015-1862-9

    Article  CAS  PubMed  Google Scholar 

  • Kurek-Tyrlik A, Michalak K, Wicha J (2005) Synthesis of 17-epi-calcitriol from a common androstane derivative, involving the ring B photochemical opening and the intermediate triene ozonolysis. J Org Chem 70(21):8513–8521. doi:10.1021/jo051357u

    Article  CAS  PubMed  Google Scholar 

  • McDonald JG, Russell DW (2010) Editorial: 25-hydroxycholesterol: a new life in immunology. J Leukoc Biol 88(6):1071–1072. doi:10.1189/jlb.0710418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto K, Kubodera N, Murayama E, Ochi K, Mori T, Matsunaga I (1986) Synthetic studies on vitamin-D analogs .6. A new synthesis of 25-hydroxycholesterol from lithocholic acid. Synthetic Commun 16(5):513–521. doi:10.1080/00397918608078765

    Article  CAS  Google Scholar 

  • Neter J, Wasserman W, Kutner MH (1985) Applied linear statistical models: regression, analysis of variance, and experimental designs. Irwin, Homewood, IL

    Google Scholar 

  • Ogawa S, Kakiyama G, Muto A, Hosoda A, Mitamura K, Ikegawa S, Hofmann AF, Iida T (2009) A facile synthesis of C-24 and C-25 oxysterols by in situ generated ethyl(trifluoroxymethyl)dioxirane. Steroids 74(1):81–87. doi:10.1016/j.steroids.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  • Rao SM, Thakkar K, Pawar K (2013) Microbial transformation of steroids: current trends in cortical side chain cleavage. Quest 1:16–20

    Google Scholar 

  • Reboldi A, Dang EV, McDonald JG, Liang GS, Russell DW, Cyster JG (2014) 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345(6197):679–684. doi:10.1126/science.1254790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riediker M, Schwartz J (1981) A new synthesis of 25-hydroxycholesterol. Tetrahedron Lett 22(46):4655–4658. doi:10.1016/S0040-4039(01)83005-7

    Article  CAS  Google Scholar 

  • Riva S (1991) Enzymatic modification of steroids., vol 1. Marcel Dekker, Inc., New York

    Google Scholar 

  • Ryznar T, Krupa M, Kutner A (2002) Syntheses of vitamin D metabolites and analogs. Retrospect and prospects. Przem Chem 81(5):300–310

    CAS  Google Scholar 

  • Sasaki J, Miyazaki A, Saito M, Adachi T, Mizoue K, Hanada K, Omura S (1992) Transformation of vitamin-D3 to 1-alpha, 25-dihydroxyvitamin-D3 via 25-hydroxyvitamin-D3 using Amycolata sp. strains. Appl Microbiol Biotechnol 38(2):152–157

    Article  CAS  PubMed  Google Scholar 

  • Schilke KF, Kelly C (2008) Activation of immobilized lipase in non-aqueous systems by hydrophobic POIY-DL-tryptophan tethers. Biotechnol Bioeng 101(1):9–18. doi:10.1002/bit.21870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seung-Kwon, N, Myung-Kuk, K, Won-Tae, Y, Kyung-Moon, P, Sang-Ok, P (2002) Method for preparation of androst-4-ene-3,17-dione and androsta-1,4-diene-3,17-dione. PCT/KR2002/000876

  • Szaleniec M, Hagel C, Menke M, Nowak P, Witko M, Heider J (2007) Kinetics and mechanism of oxygen-independent hydrocarbon hydroxylation by ethylbenzene dehydrogenase. Biochemistry 46(25):7637–7646. doi:10.1021/bi700633c

    Article  CAS  PubMed  Google Scholar 

  • Szaleniec, M, Rugor, A, Dudzik, A, Tataruch, M, Szymańska, K, Jarzębski, A (2015) [Method of obtaining 25-hydroxylated sterol derivatives, including 25-hydroxy-7-dehydrocholesterol]. Poland

  • Szymanska K, Pudlo W, Mrowiec-Bialon J, Czardybon A, Kocurek J, Jarzebski AB (2013) Immobilization of invertase on silica monoliths with hierarchical pore structure to obtain continuous flow enzymatic microreactors of high performance. Micropor Mesopor Mat 170:75–82

    Article  CAS  Google Scholar 

  • Tarlera S (2003) Sterolibacterium denitrificans gen. Nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the Proteobacteria. Int J Syst Evol Microbiol 53(4):1085–1091. doi:10.1099/ijs.0.02039-0

    Article  CAS  PubMed  Google Scholar 

  • Tataruch M, Heider J, Bryjak J, Nowak P, Knack D, Czerniak A, Liesiene J, Szaleniec M (2014) Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production. J Biotechnol 192:400–409. doi:10.1016/j.jbiotec.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  • Warnke M, Jung T, Dermer J, Hipp K, Jehmlich N, von Bergen M, Ferlaino S, Fries A, Müller M, Boll M (2016) 25-hydroxyvitamin D3 synthesis by enzymatic steroid side-chain hydroxylation with water. Angew Chem Int Ed Engl 55(5):1881–1884. doi:10.1002/ange.201510331

    Article  CAS  PubMed  Google Scholar 

  • Westover EJ, Covey DF (2006) Synthesis of ent-25-hydroxycholesterol. Steroids 71(6):484–488. doi:10.1016/j.steroids.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  • Williams RO, Mahaguna V, Sriwongjanya M (1998) Characterization of an inclusion complex of cholesterol and hydroxypropyl-beta-cyclodextrin. Eur J Pharm Biopharm 46(3):355–360. doi:10.1016/S0939-6411(98)00033-2

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Kurihara H, Mutoh T, Xing XH, Unno H (2005) Cholesterol recovery from inclusion complex of beta-cyclodextrin and cholesterol by aeration at elevated temperatures. Biochem Eng J 22(3):197–205

    Article  CAS  Google Scholar 

  • Yasuda K, Endo M, Ikushiro S, Kamakura M, Ohta M, Sakaki T (2013) UV-dependent production of 25-hydroxyvitamin D2 in the recombinant yeast cells expressing human CYP2R1. Biochem Biophys Res Commun 434(2):311–315. doi:10.1016/j.bbrc.2013.02.124

    Article  CAS  PubMed  Google Scholar 

  • Yasutake Y, Nishioka T, Imoto N, Tamura T (2013) A single mutation at the ferredoxin binding site of P450 Vdh enables efficient biocatalytic production of 25-hydroxyvitamin D(3. Chembiochem 14(17):2284–2291. doi:10.1002/cbic.201300386

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Zhang R, Zhang J, Chen L, Zhao C, Dong W, Zhao Q, Wu Q, Zhu D (2014) Engineering a hydroxysteroid dehydrogenase to improve its soluble expression for the asymmetric reduction of cortisone to 11β-hydrocortisone. Appl Microbiol Biotechnol 98(21):8879–8886. doi:10.1007/s00253-014-5967-1

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Ji L, Qian GP, Liu JG, Wang ZQ, WP Y, Chen XZ (2014) Investigation on the synthesis of 25-hydroxycholesterol. Steroids 85:1–5. doi:10.1016/j.steroids.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  • Zhu JG, Ochalek JT, Kaufmann M, Jones G, Deluca HF (2013) CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A 110(39):15650–15655. doi:10.1073/pnas.1315006110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Polish institutions of the National Center of Research and Development (grant project: LIDER/33/147/L-3/11/NCBR) and the National Center of Science (grant SONATA UMO-2012/05/D/ST4/00277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Szaleniec.

Ethics declarations

Conflict of interest

All authors declare no conflict of interests.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic Supplementary Materials

ESM 1

(DOCX 1.85 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rugor, A., Tataruch, M., Staroń, J. et al. Regioselective hydroxylation of cholecalciferol, cholesterol and other sterol derivatives by steroid C25 dehydrogenase. Appl Microbiol Biotechnol 101, 1163–1174 (2017). https://doi.org/10.1007/s00253-016-7880-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7880-2

Keywords

Navigation