Skip to main content
Log in

Optimization of culture conditions for the bioconversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 usingPseudonocardia autotrophica ID 9302

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We assessed the ability of aPseudonocardia sp. from soil samples to bioconvert vitamin D3. The optimal culture conditions for the bioconversion of vitamin D3 to active 1α,25-dihydroxyvitamin D3 were investigated by varying the carbon and nitrogen sources, the metal salt concentrations, the initial pH, and the temperature. Microbial transformations were carried out with the addition of vitamin D3 dissolved in ethanol. They were sampled by extraction with methanol-dichloromethane and the samples were examined by HPLC. Optimum culture conditions were found to be 0.4% yeast extract, 1% glucose, 3% starch, 1% fish meal, 0.2% NaCl, 0.01% K2HPO4, 0.2% CaCO3, 0.01% NaF, and pH 7.0 at 28°C. The optimal timing of the addition of vitamin D3 for the production of calcitriol byPseudonocardia autotrophica ID 9302 was concurrent with the inoculation of seed culture broth. Maximum calcitriol productivity and the yield of bioconversion reached a value of 10.4 mg/L and 10.4% respectively on the 7th day in a 75 L fermenter jar under the above conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeLuca, H. F., and H. K. Schnoes (1983) Vitamin D: recent advances.Annu. Rev. Biochem. 52: 411–439.

    Article  CAS  Google Scholar 

  2. Madhok, T. C., and H. F. DeLuca (1979) Characteristics of the rat liver microsomal enzyme system converting cholecalciferol into 25-hydroxycholecalciferol Evidence for the participation of cytochrome p-450.Biochem. J. 184: 491–499.

    CAS  Google Scholar 

  3. Ikekawa, N. (1987) Structures and biological activities of vitamin D metabolites and their analogs.Med. Res. Rev. 7: 333–366.

    Article  CAS  Google Scholar 

  4. Brenza, H. L., and H. F. DeLuca (2000) Regulation of 25-hydroxyvitamin D3 1α-hydroxylase gene expression by parathyroid hormone and 1,25-dihydroxyvitamin D3 Arch. Biochem. Biophys. 381: 143–152.

    Article  CAS  Google Scholar 

  5. Xue, Y., A. C. Karaplis, G. N. Hendy, D. Goltzman. and D. Miao (2005) Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development.Hum Mol. Genet. 14: 1515–1528.

    Article  CAS  Google Scholar 

  6. Beckman, M. J. and H. F. DeLuca (2002) Regulation of renal vitamin D receptor is an important determinant of 1α,25-dihydroxyvitamin D3, levelsin vivo.Arch. Biochem. Biophys. 401: 44–52.

    Article  CAS  Google Scholar 

  7. Hatakeyama, S., K. Sugawara, H. Numata, and S. Takano (1991) A novel convergent synthesis of (+)-1α,25-dihydroxyvitamin D3 using a chromium(II)-mediated coupling reaction.J. Org. Chem. 56: 461–463.

    Article  CAS  Google Scholar 

  8. Andrews, D. R., D. H. R. Barton, R. H. Hesse, and M. M. Pechet (1986) Synthesis of 25-hydroxy- and 1α,25-dihydroxyvitamin D3 from vitamin D2 (calciferol).J. Org. Chem. 51: 4819–4828.

    Article  CAS  Google Scholar 

  9. Kametani, T., and H. Furuyama (1987) Synthesis of vitamin D3 and related compounds.Med. Res. Rev. 7: 147–171.

    Article  CAS  Google Scholar 

  10. Wang, Z. X., J. Zhuge, H. Fang, and B. A. Prior (2001) Glycerol production by microbial fermentation: a review.Biotechnol. Adv. 19: 201–223.

    Article  CAS  Google Scholar 

  11. Lau, J., C. Tran, P. Licari, and J. Galazzo (2004) Development of a high cell-density fed-batch bioprocess for the heterologous production of 6-deoxythronolide B inEscherichia coli.J. Biotechnol. 110: 95–103.

    Article  CAS  Google Scholar 

  12. Flores, E. R., F. Perez, and M. De La Torre (1997) ScaleupBacillus thuringensis fermentation based on oxygen transfer.J. Ferment. Bioeng. 83: 561–564.

    Article  CAS  Google Scholar 

  13. Uzura, A., T. Katsuragi, and Y. Tani (2001) Optimal conditions for production of (R)-1-phenylpropanol byFusarium moniliforme strain MS31.J. Biosci. Bioeng. 92: 288–293.

    Article  CAS  Google Scholar 

  14. Kulprecha, S., T. Ueda, T. Nihira, T. Yoshida, and H. Taguchi (1985) Optimum conditions for ursodeoxycholic acid production from lithocholic acid byFusarium equiseti M41.Appl. Environ. Microbiol. 49: 338–344.

    CAS  Google Scholar 

  15. Wecht-Lifshitz, S. C., M. Gadman, and E. Zomer (1989) Process optimization and scale-up of theBacillus thuringiensis fermentation.Isr. J. Entomol. 23: 239–246.

    Google Scholar 

  16. Lund, J., and H. F. DeLuca (1966) Biologically active metabolite of vitamin D3 from bone, liver, and blood serum,J. Lipid Res. 7: 739–744.

    CAS  Google Scholar 

  17. Omar, R., M. A. Abdullah, M. A. Hasan, M. Marziah, and M. K. Siti Mazlina (2005) Optimization and elucidation of interactions between ammonium, nitrate and phosphate inCentella asiatica cell culture using response surface methodology.Biotechnol. Bioprocess Eng. 10: 192–197.

    Article  CAS  Google Scholar 

  18. Jung, D.-Y., S. Jung, J.-S. Yung, J.-N. Kim, Y.-J. Wee, H.-G. Jang, and H.-W. Ryu (2005) Influences of cultural medium component on the production of poly(γ-glutamic acid) byBacillus sp. RKY3.Biotechnol. Bioprocess Eng. 10: 289–295.

    Article  CAS  Google Scholar 

  19. Sasaki, J., A. Mikami, K. Mizoue, and S. Omura (1991) Transformation of 25- and 1α-hydroxyvitamin D3 to 1α,25-dihydroxyvitamin D3 by usingStreptomyces sp. strains.Appl. Environ. Microbiol. 57: 2841–2846.

    CAS  Google Scholar 

  20. Hiwatashi, A., Y. Nishii, and Y. Ichikawa (1982) Purification of cytochrome P-450D1 α (25-hydroxyvitamin D3-1α-hydroxylase) of bovine kidney mitochondira.Biochem. Biophys. Res. Commun. 105: 320–327.

    Article  CAS  Google Scholar 

  21. Kizawa, H., D. Tomura, M. Oda, A. Fukamizu, T. Hoshino, O. Gotoh, T. Yasui, and H. Shoun (1991) Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA fromFusarium oxysporum, J. Biol. Chem. 266: 10632–10637.

    CAS  Google Scholar 

  22. Oh, Y.-K., Y.-J. Kim, J.-Y. Park, T. H. Lee, M.-S. Kim, and S. Park (2005) Biohydrogen production from carbon monoxide and water byRhodopseudomonas palustris P4Biotechnol. Bioprocess Eng. 10: 270–274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, DJ., Lee, HS., Park, JT. et al. Optimization of culture conditions for the bioconversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 usingPseudonocardia autotrophica ID 9302. Biotechnol. Bioprocess Eng. 11, 408–413 (2006). https://doi.org/10.1007/BF02932307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932307

Keywords

Navigation