Skip to main content
Log in

Structures and molecular mechanisms of action of the cholesterol C17 side-chain-degrading enzymes

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Cholesterol, an essential lipid for mammalian cells, can be used as a carbon source by bacteria and as a precursor for steroid hormones in animal cells. The cholesterol C17 side-chain-cleavage pathways are the committed and rate-limiting steps in the biosynthesis of steroid drugs. Three cholesterol C17 side-chain degradation pathways have been identified in nature: the β-oxidation pathways in actinobacteria, the oxygen-independent degradation pathway in Sterolibacterium denitrificans, and the cholesterol side-chain degradation pathway in mammals. An in-depth understanding of the structures and molecular mechanisms of enzymes in these degradation processes will facilitate the creation of enzyme mutants with better catalytic capabilities. The introduction of the engineered enzymes into the microbial cell factories may contribute to the industrial production of steroid drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Szaleniec M, Wojtkiewicz AM, Bernhardt R, Borowski T, Donova M. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbiol Biotechnol. 2018;102(19):8153–71. https://doi.org/10.1007/s00253-018-9239-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vil VA, Gloriozova TA, Poroikov VV, Terent’ev AO, Savidov N, Dembitsky VM. Peroxy steroids derived from plant and fungi and their biological activities. Appl Microbiol Biotechnol. 2018;102(18):7657–67. https://doi.org/10.1007/s00253-018-9211-2.

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, McAllister TA, Yanke LJ, Cheeke PR. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J Appl Microbiol. 2000;88(5):887–96. https://doi.org/10.1046/j.1365-2672.2000.01054.x.

    Article  CAS  PubMed  Google Scholar 

  4. Gwynne JT, Strauss J. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev. 1982;3(3):299–329. https://doi.org/10.1210/edrv-3-3-299.

    Article  CAS  PubMed  Google Scholar 

  5. Bhatti HN, Khera RA. Biological transformations of steroidal compounds: a review. Steroids. 2012;77(12):1267–90. https://doi.org/10.1016/j.steroids.2012.07.018.

    Article  CAS  PubMed  Google Scholar 

  6. Mensah-Nyagan AG, Meyer L, Schaeffer V, Kibaly C, Patte-Mensah C. Evidence for a key role of steroids in the modulation of pain. Psychoneuroendocrinology. 2009;34(Suppl 1):S169–77. https://doi.org/10.1016/j.psyneuen.2009.06.004.

    Article  CAS  PubMed  Google Scholar 

  7. Jeal W, Faulds D. Triamcinolone acetonide. A review of its pharmacological properties and therapeutic efficacy in the management of allergic rhinitis. Drugs. 1997;53(2):257–80. https://doi.org/10.2165/00003495-199753020-00006.

    Article  CAS  PubMed  Google Scholar 

  8. Heming N, Sivanandamoorthy S, Meng P, Bounab R, Annane D. Immune effects of corticosteroids in sepsis. Front Immunol. 2018;9:1736. https://doi.org/10.3389/fimmu.2018.01736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wollam J, Antebi A. Sterol regulation of metabolism, homeostasis, and development. Annu Rev Biochem. 2011;80:885–916. https://doi.org/10.1146/annurev-biochem-081308-165917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. García JL, Uhía I, Galán B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol. 2012;5(6):679–99. https://doi.org/10.1111/j.1751-7915.2012.00331.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shtratnikova VY, Bragin EY, Dovbnya DV, Pekov YA, Schelkunov MI, Strizhov N, Ivashina TV, Ashapkin VV, Donova MV. Complete genome sequence of sterol-transforming Mycobacterium neoaurum strain VKM Ac-1815D. Genome Announc. 2014;2(1):e01177-e1213. https://doi.org/10.1128/genomeA.01177-13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Macías FA, Chinchilla N, Varela RM, Molinillo JM. Bioactive steroids from Oryza sativa L. Steroids. 2006;71(7):603–8. https://doi.org/10.1016/j.steroids.2006.03.001.

    Article  CAS  PubMed  Google Scholar 

  13. el El-Desoky SI, Reyad M, Afsah EM, Dawidar AA. Synthesis and chemical reactions of the steroidal hormone 17α-methyltestosterone. Steroids. 2016;105:68–95. https://doi.org/10.1016/j.steroids.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  14. Holert J, Brown K, Hashimi A, Eltis LD, Mohn WW. Steryl ester formation and accumulation in steroid-degrading bacteria. Appl Environ Microbiol. 2020;86(2):e02353-e2419. https://doi.org/10.1128/aem.02353-19.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Zhao A, Zhang X, Li Y, Wang Z, Lv Y, Liu J, Alam MA, Xiong W, Xu J. Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv. 2021;53: 107860. https://doi.org/10.1016/j.biotechadv.2021.107860.

    Article  CAS  PubMed  Google Scholar 

  16. Warnke M, Jacoby C, Jung T, Agne M, Mergelsberg M, Starke R, Jehmlich N, von Bergen M, Richnow HH, Brüls T, Boll M. A patchwork pathway for oxygenase-independent degradation of side chain containing steroids. Environ Microbiol. 2017;19(11):4684–99. https://doi.org/10.1111/1462-2920.13933.

    Article  CAS  PubMed  Google Scholar 

  17. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151. https://doi.org/10.1210/er.2010-0013.

    Article  PubMed  Google Scholar 

  18. Batth R, Nicolle C, Cuciurean IS, Simonsen HT. Biosynthesis and industrial production of androsteroids. Plants (Basel). 2020;9(9):1144. https://doi.org/10.3390/plants9091144.

    Article  CAS  PubMed  Google Scholar 

  19. Sih CJ, Tai HH, Tsong YY, Lee SS, Coombe RG. Mechanisms of steroid oxidation by microorganisms. XIV. Pathway of cholesterol side-chain degradation. Biochemistry. 1968;7(2):808–18. https://doi.org/10.1021/bi00842a039.

    Article  CAS  PubMed  Google Scholar 

  20. Rosłoniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol. 2009;74(5):1031–43. https://doi.org/10.1111/j.1365-2958.2009.06915.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen YR, Huang HH, Cheng YF, Tang TY, Liu WH. Expression of a cholesterol oxidase gene from Arthrobacter simplex in Escherichia coli and Pichia pastoris. Enzyme Microb Technol. 2006;39(4):854–60. https://doi.org/10.1016/j.enzmictec.2006.01.018.

    Article  CAS  Google Scholar 

  22. Sharma P, Slathia PS, Somal P, Mehta P. Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species. Ann Microbiol. 2012;62(4):1651–9. https://doi.org/10.1007/s13213-012-0422-y.

    Article  CAS  Google Scholar 

  23. Thomas ST, Yang X, Sampson NS. Inhibition of the M. tuberculosis 3β-hydroxysteroid dehydrogenase by azasteroids. Bioorg Med Chem Lett. 2011;21(8):2216–9. https://doi.org/10.1016/j.bmcl.2011.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doukyu N. Characteristics and biotechnological applications of microbial cholesterol oxidases. Appl Microbiol Biotechnol. 2009;83(5):825–37. https://doi.org/10.1007/s00253-009-2059-8.

    Article  CAS  PubMed  Google Scholar 

  25. Chang J, Miner M, Pandey A, Gill W, Harik N, Sassetti C, Sherman D. igr genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol. 2009;191(16):5232–9. https://doi.org/10.1128/JB.00452-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, Okamoto S, Jacobs WR Jr, Eltis LD, Mohn WW. Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids. J Biol Chem. 2009;284(51):35534–42. https://doi.org/10.1074/jbc.M109.072132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Driscoll MD, McLean KJ, Levy C, Mast N, Pikuleva IA, Lafite P, Rigby SE, Leys D, Munro AW. Structural and biochemical characterization of Mycobacterium tuberculosis CYP142: evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen. J Biol Chem. 2010;285(49):38270–82. https://doi.org/10.1074/jbc.M110.164293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2009;106(49):20687–92. https://doi.org/10.1073/pnas.0907398106.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  29. Casabon I, Swain K, Crowe AM, Eltis LD, Mohn WW. Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism. J Bacteriol. 2014;196(3):579–87. https://doi.org/10.1128/jb.01012-13.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Johnston JB, Ouellet H, Ortiz de Montellano PR. Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem. 2010;285(47):36352–60. https://doi.org/10.1074/jbc.M110.161117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wrońska N, Brzostek A, Szewczyk R, Soboń A, Dziadek J, Lisowska K. The role of fadD19 and echA19 in sterol side chain degradation by Mycobacterium smegmatis. Molecules. 2016;21(5):598. https://doi.org/10.3390/molecules21050598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang M, Lu R, Guja KE, Wipperman MF, St Clair JR, Bonds AC, Garcia-Diaz M, Sampson NS. Unraveling cholesterol catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 acyl-CoA dehydrogenase initiates β-oxidation of 3-Oxo-cholest-4-en-26-oyl CoA. ACS Infect Dis. 2015;1(2):110–25. https://doi.org/10.1021/id500033m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS, Stoker NG. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol. 2007;65(3):684–99. https://doi.org/10.1111/j.1365-2958.2007.05827.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan T, Yang M, Gehring K, Sampson NS. Mycobacterium tuberculosis exploits a heterohexameric enoyl-CoA hydratase retro-aldolase complex for cholesterol catabolism. Biochemistry. 2019;58(41):4224–35. https://doi.org/10.1021/acs.biochem.9b00673.

    Article  CAS  PubMed  Google Scholar 

  35. Bonds AC, Yuan T, Werman JM, Jang J, Lu R, Nesbitt NM, Garcia-Diaz M, Sampson NS. Post-translational succinylation of Mycobacterium tuberculosis enoyl-CoA hydratase EchA19 slows catalytic hydration of cholesterol catabolite 3-Oxo-chol-4,22-diene-24-oyl-CoA. ACS Infect Dis. 2020;6(8):2214–24. https://doi.org/10.1021/acsinfecdis.0c00329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan T, Werman JM, Yin X, Yang M, Garcia-Diaz M, Sampson NS. Enzymatic β-oxidation of the cholesterol side chain in Mycobacterium tuberculosis bifurcates stereospecifically at hydration of 3-Oxo-cholest-4,22-dien-24-oyl-CoA. ACS Infect Dis. 2021;7(6):1739–51. https://doi.org/10.1021/acsinfecdis.1c00069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang M, Guja KE, Thomas ST, Garcia-Diaz M, Sampson NS. A distinct MaoC-like enoyl-CoA hydratase architecture mediates cholesterol catabolism in Mycobacterium tuberculosis. ACS Chem Biol. 2014;9(11):2632–45. https://doi.org/10.1021/cb500232h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu LQ, Liu YJ, Yao K, Liu HH, Tao XY, Wang FQ, Wei DZ. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep. 2016;6:21928. https://doi.org/10.1038/srep21928.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Anbazhagan P, Harijan RK, Kiema TR, Janardan N, Murthy MR, Michels PA, Juffer AH, Wierenga RK. Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis. Tuberculosis (Edinb). 2014;94(4):405–12. https://doi.org/10.1016/j.tube.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  40. Schaefer CM, Lu R, Nesbitt NM, Schiebel J, Sampson NS, Kisker C. FadA5 a thiolase from Mycobacterium tuberculosis: a steroid-binding pocket reveals the potential for drug development against tuberculosis. Structure. 2015;23(1):21–33. https://doi.org/10.1016/j.str.2014.10.010.

    Article  CAS  PubMed  Google Scholar 

  41. Aggett R, Mallette E, Gilbert SE, Vachon MA, Schroeter KL, Kimber MS, Seah SYK. The steroid side-chain-cleaving aldolase Ltp2–ChsH2(DUF35) is a thiolase superfamily member with a radically repurposed active site. J Biol Chem. 2019;294(31):11934–43. https://doi.org/10.1074/jbc.RA119.008889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gilbert S, Hood L, Seah SYK. Characterization of an aldolase involved in cholesterol side chain degradation in Mycobacterium tuberculosis. J Bacteriol. 2018;200(2):e00512-e517. https://doi.org/10.1128/jb.00512-17.

    Article  CAS  PubMed  Google Scholar 

  43. Ruprecht A, Maddox J, Stirling AJ, Visaggio N, Seah SY. Characterization of novel acyl coenzyme A dehydrogenases involved in bacterial steroid degradation. J Bacteriol. 2015;197(8):1360–7. https://doi.org/10.1128/jb.02420-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomas ST, Sampson NS. Mycobacterium tuberculosis utilizes a unique heterotetrameric structure for dehydrogenation of the cholesterol side chain. Biochemistry. 2013;52(17):2895–904. https://doi.org/10.1021/bi4002979.

    Article  CAS  PubMed  Google Scholar 

  45. Lu R, Schmitz W, Sampson NS. α-Methyl acyl CoA racemase provides Mycobacterium tuberculosis catabolic access to cholesterol esters. Biochemistry. 2015;54(37):5669–72. https://doi.org/10.1021/acs.biochem.5b00911.

    Article  CAS  PubMed  Google Scholar 

  46. Chiang YR, Ismail W, Gallien S, Heintz D, Van Dorsselaer A, Fuchs G. Cholest-4-en-3-one-delta 1-dehydrogenase, a flavoprotein catalyzing the second step in anoxic cholesterol metabolism. Appl Environ Microbiol. 2008;74(1):107–13. https://doi.org/10.1128/aem.01968-07.

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Chiang YR, Ismail W, Müller M, Fuchs G. Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem. 2007;282(18):13240–9. https://doi.org/10.1074/jbc.M610963200.

    Article  CAS  PubMed  Google Scholar 

  48. Dermer J, Fuchs G. Molybdoenzyme that catalyzes the anaerobic hydroxylation of a tertiary carbon atom in the side chain of cholesterol. J Biol Chem. 2012;287(44):36905–16. https://doi.org/10.1074/jbc.M112.407304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin CW, Wang PH, Ismail W, Tsai YW, El Nayal A, Yang CY, Yang FC, Wang CH, Chiang YR. Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans. J Biol Chem. 2015;290(2):1155–69. https://doi.org/10.1074/jbc.M114.603779.

    Article  CAS  PubMed  Google Scholar 

  50. Mast N, Annalora AJ, Lodowski DT, Palczewski K, Stout CD, Pikuleva IA. Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1. J Biol Chem. 2011;286(7):5607–13. https://doi.org/10.1074/jbc.M110.188433.

    Article  CAS  PubMed  Google Scholar 

  51. Lee-Robichaud P, Shyadehi AZ, Wright JN, Akhtar ME, Akhtar M. Mechanistic kinship between hydroxylation and desaturation reactions: acyl-carbon bond cleavage promoted by pig and human CYP17 (P-45017α; 17α-hydroxylase-17,20-lyase). Biochemistry. 1995;34(43):14104–13. https://doi.org/10.1021/bi00043a015.

    Article  CAS  PubMed  Google Scholar 

  52. Swart P, Swart AC, Waterman MR, Estabrook RW, Mason JI. Progesterone 16α-hydroxylase activity is catalyzed by human cytochrome P450 17α-hydroxylase. J Clin Endocrinol Metab. 1993;77(1):98–102. https://doi.org/10.1210/jcem.77.1.8325965.

    Article  CAS  PubMed  Google Scholar 

  53. Ouellet H, Guan S, Johnston JB, Chow ED, Kells PM, Burlingame AL, Cox JS, Podust LM, de Montellano PR. Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. Mol Microbiol. 2010;77(3):730–42. https://doi.org/10.1111/j.1365-2958.2010.07243.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. García-Fernández E, Frank DJ, Galán B, Kells PM, Podust LM, García JL, de Montellano PR. A highly conserved mycobacterial cholesterol catabolic pathway. Environ Microbiol. 2013;15(8):2342–59. https://doi.org/10.1111/1462-2920.12108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Varaksa T, Bukhdruker S, Grabovec I, Marin E, Kavaleuski A, Gusach A, Kovalev K, Maslov I, Luginina A, Zabelskii D, Astashkin R, Shevtsov M, Smolskaya S, Kavaleuskaya A, Shabunya P, Baranovsky A, Dolgopalets V, Charnou Y, Savachka A, Litvinovskaya R, Hurski A, Shevchenko E, Rogachev A, Mishin A, Gordeliy V, Gabrielian A, Hurt DE, Nikonenko B, Majorov K, Apt A, Rosenthal A, Gilep A, Borshchevskiy V, Strushkevich N. Metabolic fate of human immunoactive sterols in Mycobacterium tuberculosis. J Mol Biol. 2021;433(4): 166763. https://doi.org/10.1016/j.jmb.2020.166763.

    Article  CAS  PubMed  Google Scholar 

  56. Lu R, Schaefer CM, Nesbitt NM, Kuper J, Kisker C, Sampson NS. Catabolism of the cholesterol side chain in Mycobacterium tuberculosis is controlled by a redox-sensitive thiol switch. ACS Infect Dis. 2017;3(9):666–75. https://doi.org/10.1021/acsinfecdis.7b00072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci USA. 2011;108(25):10139–43. https://doi.org/10.1073/pnas.1019441108.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  58. Petrunak EM, DeVore NM, Porubsky PR, Scott EE. Structures of human steroidogenic cytochrome P450 17A1 with substrates. J Biol Chem. 2014;289(47):32952–64. https://doi.org/10.1074/jbc.M114.610998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, Leys D, Munro AW. The Structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem. 2009;284(51):35524–33. https://doi.org/10.1074/jbc.M109.032706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rittle J, Green MT. Cytochrome P450 compound I: capture, characterization, and C–H bond activation kinetics. Science. 2010;330(6006):933–7. https://doi.org/10.1126/science.1193478.

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem Rev. 2004;104(9):3947–80. https://doi.org/10.1021/cr020443g.

    Article  CAS  PubMed  Google Scholar 

  62. Sushko T, Kavaleuski A, Grabovec I, Kavaleuskaya A, Vakhrameev D, Bukhdruker S, Marin E, Kuzikov A, Masamrekh R, Shumyantseva V, Tsumoto K, Borshchevskiy V, Gilep A, Strushkevich N. A new twist of rubredoxin function in M. tuberculosis. Bioorg Chem. 2021;109:104721. https://doi.org/10.1016/j.bioorg.2021.104721.

    Article  CAS  PubMed  Google Scholar 

  63. Kim JJ, Miura R. Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. Eur J Biochem. 2004;271(3):483–93. https://doi.org/10.1046/j.1432-1033.2003.03948.x.

    Article  CAS  PubMed  Google Scholar 

  64. Kim JJ, Wang M, Paschke R. Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate. Proc Natl Acad Sci USA. 1993;90(16):7523–7. https://doi.org/10.1073/pnas.90.16.7523.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Headlam MJ, Wilce MC, Tuckey RC. The F–G loop region of cytochrome P450scc (CYP11A1) interacts with the phospholipid membrane. Biochim Biophys Acta. 2003;1617(1–2):96–108. https://doi.org/10.1016/j.bbamem.2003.09.007.

    Article  CAS  PubMed  Google Scholar 

  66. Usanov SA, Graham SE, Lepesheva GI, Azeva TN, Strushkevich NV, Gilep AA, Estabrook RW, Peterson JA. Probing the interaction of bovine cytochrome P450scc (CYP11A1) with adrenodoxin: evaluating site-directed mutations by molecular modeling. Biochemistry. 2002;41(26):8310–20. https://doi.org/10.1021/bi0255928.

    Article  CAS  PubMed  Google Scholar 

  67. Yoshimoto FK, Jung IJ, Goyal S, Gonzalez E, Guengerich FP. Isotope-labeling studies support the electrophilic compound I iron active species (FeO3+) for the carbon-carbon bond cleavage reaction of the cholesterol side-chain cleavage enzyme, cytochrome P450 11A1. J Am Chem Soc. 2016;138(37):12124–41. https://doi.org/10.1021/jacs.6b04437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arlt W, Martens JW, Song M, Wang JT, Auchus RJ, Miller WL. Molecular evolution of adrenarche: structural and functional analysis of P450c17 from four primate species. Endocrinology. 2002;143(12):4665–72. https://doi.org/10.1210/en.2002-220456.

    Article  CAS  PubMed  Google Scholar 

  69. Akhtar M, Wright JN, Lee-Robichaud P. A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J Steroid Biochem Mol Biol. 2011;125(1–2):2–12. https://doi.org/10.1016/j.jsbmb.2010.11.003.

    Article  CAS  PubMed  Google Scholar 

  70. DeVore NM, Scott EE. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature. 2012;482(7383):116–9. https://doi.org/10.1038/nature10743.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Meunie B. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev. 2004;104(9):3947–80. https://doi.org/10.1021/cr020443g.

    Article  CAS  Google Scholar 

  72. Estrada DF, Skinner AL, Laurence JS, Scott EE. Human cytochrome P450 17A1 conformational selection: modulation by ligand and cytochrome b5. J Biol Chem. 2014;289(20):14310–20. https://doi.org/10.1074/jbc.M114.560144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Duggal R, Liu Y, Gregory MC, Denisov IG, Kincaid JR, Sligar SG. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis. Biochem Biophys Res Commun. 2016;477(2):202–8. https://doi.org/10.1016/j.bbrc.2016.06.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yao K, Xu LQ, Wang FQ, Wei DZ. Characterization and engineering of 3-ketosteroid-Δ1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Metab Eng. 2014;24:181–91. https://doi.org/10.1016/j.ymben.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  75. Andor A, Jekkel A, Hopwood DA, Jeanplong F, Ilkoy E, Kónya A, Kurucz I, Ambrus G. Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9α-hydroxylase in Mycobacterium smegmatis mc2155. Appl Environ Microbiol. 2006;72(10):6554–9. https://doi.org/10.1128/aem.00941-06.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Galán B, Uhía I, García-Fernández E, Martínez I, Bahíllo E, de la Fuente JL, Barredo JL, Fernández-Cabezón L, García JL. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol. 2017;10(1):138–50. https://doi.org/10.1111/1751-7915.12429.

    Article  CAS  PubMed  Google Scholar 

  77. Yao K, Wang FQ, Zhang HC, Wei DZ. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab Eng. 2013;15:75–87. https://doi.org/10.1016/j.ymben.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

  78. Su L, Shen Y, Xia M, Shang Z, Xu S, An X, Wang M. Overexpression of cytochrome P450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation. J Ind Microbiol Biotechnol. 2018;45(10):857–67. https://doi.org/10.1007/s10295-018-2063-z.

    Article  CAS  PubMed  Google Scholar 

  79. Liu M, Xiong LB, Tao X, Liu QH, Wang FQ, Wei DZ. Integrated transcriptome and proteome studies reveal the underlying mechanisms for sterol catabolism and steroid production in Mycobacterium neoaurum. J Agric Food Chem. 2018;66(34):9147–57. https://doi.org/10.1021/acs.jafc.8b02714.

    Article  CAS  PubMed  Google Scholar 

  80. Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol. 2003;21(2):143–9. https://doi.org/10.1038/nbt775.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang R, Zhang Y, Wang Y, Yao M, Zhang J, Liu H, Zhou X, Xiao W, Yuan Y. Pregnenolone overproduction in Yarrowia lipolytica by integrative components pairing of the cytochrome P450scc system. ACS Synth Biol. 2019;8(12):2666–78. https://doi.org/10.1021/acssynbio.9b00018.

    Article  CAS  PubMed  Google Scholar 

  82. Yang J, Li C, Zhang Y. Engineering of Saccharomyces cerevisiae for 24-methylene-cholesterol production. Biomolecules. 2021;11(11):1710. https://doi.org/10.3390/biom11111710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Su W, Xiao WH, Wang Y, Liu D, Zhou X, Yuan YJ. Alleviating redox imbalance enhances 7-dehydrocholesterol production in engineered Saccharomyces cerevisiae. PLoS One. 2015;10(6): e0130840. https://doi.org/10.1371/journal.pone.0130840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genet. 2010;11(5):367–79. https://doi.org/10.1038/nrg2775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. https://doi.org/10.1038/nprot.2013.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gavira JA. Current trends in protein crystallization. Arch Biochem Biophys. 2016;602:3–11. https://doi.org/10.1016/j.abb.2015.12.010.

    Article  CAS  PubMed  Google Scholar 

  87. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9. https://doi.org/10.1038/s41586-021-03819-2.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Farwell CC, McIntosh JA, Hyster TK, Wang ZJ, Arnold FH. Enantioselective imidation of sulfides via enzyme-catalyzed intermolecular nitrogen-atom transfer. J Am Chem Soc. 2014;136(24):8766–71. https://doi.org/10.1021/ja503593n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Reetz MT. Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc Natl Acad Sci USA. 2004;101(16):5716–22. https://doi.org/10.1073/pnas.0306866101.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2019YFA0905300) and the Natural Science Foundation of China (no. 81872779).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhua Wang or Xiaohui Yan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, K., Zhang, M., Zhang, H. et al. Structures and molecular mechanisms of action of the cholesterol C17 side-chain-degrading enzymes. Syst Microbiol and Biomanuf 4, 1–19 (2024). https://doi.org/10.1007/s43393-022-00083-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00083-x

Keywords

Navigation