Skip to main content
Log in

Paradoxical performance of tryptophan synthase gene trp1 + in transformations of the basidiomycete Coprinopsis cinerea

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Several transformation strains of Coprinopsis cinerea carry the defective tryptophan synthase allele trp1-1,1-6 which can be complemented by introduction of the trp1 + wild-type gene. Regularly in C. cinerea, single-trp1 +-vector transformations yield about half the numbers of clones than cotransformations with a non-trp1 +-plasmid done in parallel. The effect is also observed with the orthologous Schizophyllum commune trpB + gene shown here to function as a selection marker in C. cinerea. Parts of single-trp1 +- or single-trpB +-vector transformants are apparently lost. This paradoxical phenomenon relates to de-regulation of aromatic amino acid biosynthesis pathways. Adding tryptophan precursors to protoplast regeneration agar or feeding with other aromatic amino acids increases loss of single-trp1 +-vector transformants and also sets off loss of clones in cotransformation with a non-trp1 +-plasmid. Feedback control by tryptophan and cross-pathway control by tyrosine and phenylalanine are both active in the process. We deduce from the observations that more cotransformants than single-vector transformants are obtained by in average less disturbance of the tryptophan biosynthesis pathway. DNA in C. cinerea transformation usually integrates into the genome at multiple ectopic places. Integration events for a single vector per nucleus should statistically be 2-fold higher in single-vector transformations than in cotransformations in which the two different molecules compete for the same potential integration sites. Integration of more trp1 + copies into the genome might more likely lead to sudden tryptophan overproduction with subsequent rigid shut-down of the pathway. Blocking ectopic DNA integration in a Δku70 mutant abolished the effect of doubling clone numbers in cotransformations due to preferred single trp1 + integration by homologous recombination at its native genomic site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed SI, Giles NH (1969) Organization of enzymes in the common aromatic synthetic pathway: evidence for aggregation in fungi. J Bacteriol 99:231–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aronson BD, Lindgren KM, Dunlap JC, Loros JJ (1994) An efficient method for gene disruption in Neurospora crassa. Mol Gen Genet 242:490–494

    Article  CAS  PubMed  Google Scholar 

  • Asch DK, Kinsey JA (1990) Relationship of vector insert size to homologous integration during transformation of Neurospora crassa with the cloned am (GDH) gene. Mol Gen Genet 221:37–43

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (2001) Current protocols in molecular biology, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Barker C, Lewis D (1974) Impaired regulation of aromatic amino acid synthesis in a mutant resistant to p-fluorophenylalanine. J Gen Microbiol 82:337–343

    Article  CAS  PubMed  Google Scholar 

  • Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J 6:835–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binninger DM, Le Chevanton L, Skrzynia C, Shubkin CD, Pukkila PJ (1991) Targeted transformation in Coprinus cinereus. Mol Gen Genet 227:245–251

    Article  CAS  PubMed  Google Scholar 

  • Braus GH, Pries R, Düvel K, Valerius O (2004) Molecular biology of fungal amino acid biosynthesis regulation. In: Kück U (ed) The mycota, Genetics and biotechnology, vol 2. Springer, Berlin Heidelberg, pp 239–269

    Google Scholar 

  • Burns C, Gregory KE, Kirby M, Cheung MK, Riquelme M, Elliott TJ, Challen MP, Bailey AM, Foster GD (2005) Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet Biol 42:191–199

    Article  CAS  PubMed  Google Scholar 

  • Case ME (1986) Genetical and molecular analyses of qa-2 transformants in Neurospora crassa. Genetics 113:569–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casselton LA, de la Fuente HA (1989) Heterologous gene expression in the basidiomycete fungus Coprinus cinereus. Curr Genet 16:35–40

    Article  CAS  Google Scholar 

  • Cheng S, Yang P, Guo L, Lin J, Lou N (2009) Expression of multi-functional cellulase gene mfc in Coprinus cinereus under control of different basidiomycete promoters. Bioresour Technol 100:4475–4480

    Article  CAS  PubMed  Google Scholar 

  • de Atauri P, Acerenza L, Kholodenko BN, de la Iglesia N, Guinovart JJ, Agius L, Cascante M (2001) Occurence of paradoxical or sustained control by an enzyme when overexpressed: necessary conditions and experimental evidence with regard to hepatic glucokinase. Biochem J 355:787–793

    Article  PubMed  PubMed Central  Google Scholar 

  • Dev K, Maheshwari R (2002) Transformation in heterokaryons of Neurospora crassa is nuclear rather than cellular phenomenon. Curr Microbiol 44:309–313

    Article  CAS  PubMed  Google Scholar 

  • Dhawale SS, Marzluf GA (1985) Transformation of Neurospora crassa with circular and linear DNA and analysis of the fate of the transforming DNA. Curr Biol 10:205–212

    CAS  Google Scholar 

  • Dons JJ, de Vries OM, Wessels JG (1979) Characterization of the genome of the basidiomycete Schizophyllum commune. Biochim Biophys Acta 563:100–112

    Article  CAS  PubMed  Google Scholar 

  • Dörnte B, Kües U (2012) Reliability in transformation of the basidiomycete Coprinopsis cinerea. Curr Trends Biotechnol Pharm 6:340–355

    Google Scholar 

  • Dörnte B, Kües U (2013a) Fast microwave-based DNA extraction from vegetative mycelium and fruiting body tissues of Agaricomycetes for PCR amplification. Curr Trends Biotechnol Pharm 7:825–836

    Google Scholar 

  • Dörnte B, Kües U (2013b) Effect of trp1 + harboring vectors on transformation efficiencies in Coprinopsis cinerea. In: Chinese Academy of Engineering and China Chamber of Commerce of Foodstuffs and Native Produce (ed) Proceedings of the 7th International Medicinal Mushroom Conference, IMMC7. Jiangsu Alphay Biological Technology Co., China, pp 328–333

  • Dörnte B, Kües U (2016) Split trp1 + gene markers for selection in sequential transformations of the Agaricomycete Coprinopsis cinerea. Curr Biotechnol 5: in press; doi: 10.2174/2211550105666160517142815

  • Dunn MF (2012) Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex. Arch Biochem Biophys 519:154–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fincham JR (1989) Transformation in fungi. Microbiol Rev 53:148–170

  • Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:38–41

    Article  CAS  PubMed  Google Scholar 

  • Goosen T, van Engelenburg F, Debets F, Swart K, Bos K, van den Broek H (1989) Tryptophan auxotrophic mutants in Aspergillus niger: inactivation of the trpC gene by cotransformation mutagenesis. Mol Gen Genet 219:282–288

    Article  CAS  PubMed  Google Scholar 

  • Granado JD, Kertesz-Chaloupková K, Aebi M, Kües U (1997) Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet 256:28–36

    Article  CAS  PubMed  Google Scholar 

  • Grotelueschen J, Metzenberg RL (1995) Some property of the nucleus determines the competence of Neurospora crassa for transformation. Genetics 139:1545–1551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han F, Liu Y, Guo LQ, Zeng XL, Liu ZM, Lin JF (2010) Heterologous expression of the immunomodulatory protein gene from Ganoderma sinense in the basidiomycete Coprinopsis cinerea. J Appl Microbiol 109:1838–1844

    Article  CAS  PubMed  Google Scholar 

  • Hart Y, Alon U (2013) The utility of paradoxical components in biological circuits. Mol Cell 49:213–221

    Article  CAS  PubMed  Google Scholar 

  • Helmstaedt K, Heinrich G, Lipscomb WN, Braus GH (2002) Refined molecular hinge between allosteric and catalytic domain determines allosteric regulation and stability of fungal chorismate mutase. Proc Natl Acad Sci U S A 99:6631–6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmstaedt K, Strittmatter A, Lipscomb WN, Braus GH (2005) Evolution of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102:9784–9789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heneghan MN, Porta C, Zhang C, Burton KS, Challen MP, Bailey AM, Foster GD (2009) Characterization of serine protease expression in Agaricus bisporus and Coprinopsis cinerea using green fluorescent protein and the A. bisporus SPR1 promoter. Appl Environ Microbiol 75:792–801

    Article  CAS  PubMed  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  • Hütter R, DeMoss JA (1967) Organization of the tryptophan pathway: a phylogenetic study of the fungi. J Bacteriol 94:1896–1907

  • Hütter R, Niederberger P, DeMoss JA (1986) Tryptophan biosynthetic genes in eukaryotic microorganisms. Annu Rev Microbiol 40:55–77

    Article  PubMed  Google Scholar 

  • Inada K, Morimoto Y, Arima T, Murata Y, Kamasa T (2001) The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157:133–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Muraguchi H, Seshime Y, Oita S, Yanagi SO (2004) Flutolanil and carboxin resistance in Coprinus cinereus conferred by a mutation in the cytochrome b 560 subunit of succinate dehydrogenase complex (Complex II). Mol Gen Genomics 272:328–335

    Article  CAS  Google Scholar 

  • James TY, Boulianne RP, Bottoli AP, Granado JD, Aebi M, Kües U (2002) The pab1 gene of Coprinus cinereus encodes a bifunctional protein for para-aminobenzoic acid (PABA) synthesis: implications for the evolution of fused PABA synthases. J Basic Microbiol 42:91–103

    Article  CAS  PubMed  Google Scholar 

  • James TY, Srivilai P, Kües U, Vilgalys R (2006) Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172:1877–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kertesz-Chaloupková K, Walser PJ, Granado JD, Aebi M, Kües U (1998) Blue light overrides repression of asexual sporulation by mating type genes in the basidiomycete Coprinus cinereus. Fungal Genet Biol 23:95–109

    Article  PubMed  Google Scholar 

  • Kholodenko BN, Brown GC (1996) Paradoxical control properties of enzymes within pathways: can activation cause an enzyme to have increased control? Biochem J 314:753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi M, Ogawa K, Yamazaki T, Kajiwara S, Sugio A, Nakamura S, Shishido K (1999) Secretional expression of a Bacillus subtilis xylanase gene in the Basidiomycete Coprinus cinereus. FEMS Microbiol Lett 178:277–282

    Article  CAS  Google Scholar 

  • Kilaru S, Hoegger PJ, Majcherczyk A, Burns C, Shishido K, Bailey A, Foster GD, Kües U (2006) Expression of laccase gene lcc1 in Coprinopsis cinerea under control of various basidiomycetous promoters. Appl Microbiol Biotechnol 71:200–210

    Article  CAS  PubMed  Google Scholar 

  • Kilaru S, Collins CM, Hartley AJ, Burns C, Foster GD, Bailey AM (2009) Investigating dominant selection markers for Coprinopsis cinerea: a carboxin resistance system and re-evaluation of hygromycin and phleomycin resistance vectors. Curr Genet 55:543–550

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Marzluf GA (1988) Transformation of Neurospora crassa with the trp-1 gene and the effect of host strain upon the fate of the transforming DNA. Curr Genet 13:65–70

    Article  CAS  PubMed  Google Scholar 

  • Krappmann S, Lipscomb WN, Braus GH (2000) Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97:13585–13590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62

    Article  PubMed  Google Scholar 

  • Kües U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64:316–353

    Article  PubMed  PubMed Central  Google Scholar 

  • Kües U, Stahl U (1990) Recombination: Recombination of transforming DNA in fungi. Prog Bot 52:201–225

    Google Scholar 

  • Kües U, Richardson WV, Tymon AM, Mutasa ES, Göttgens B, Gaubatz S, Gregoriades A, Casselton LA (1992) The combination of dissimilar alleles of the and gene complexes, whose proteins contain homeo domain motifs, determines sexual development in the mushroom Coprinus cinereus. Genes Dev 6:568–577

  • Kües U, Asante-Owusu RN, Mutasa ES, Tymon AM, Pardo EH, O’Shea SF, Göttgens B, Casselton LA (1994a) Two classes of homeodomain proteins specify the multiple A mating types of the mushroom Coprinus cinereus. Plant Cell 6:1467–1475

    Article  PubMed  PubMed Central  Google Scholar 

  • Kües U, Tymon AM, Richardson WV, May G, Gieser PT, Casselton LA (1994b) A mating-type factors of Coprinus cinereus have variable numbers of specificity genes encoding 2 classes of homeodomain proteins. Mol Gen Genet 245:45–52

    Article  PubMed  Google Scholar 

  • Kües U, Klaus MJ, Polak E, Aebi M (2001) Multiple cotransformations in Coprinus cinereus. Fungal Genet Newsl 48:32–34

    Google Scholar 

  • Kües U, Walser PJ, Klaus MJ, Aebi M (2002) Influence of activated A and B mating-type pathways on developmental processes in the basidiomycete Coprinus cinereus. Mol Gen Genomics 268:262–271

    Article  Google Scholar 

  • Liu Y, Srivilai P, Loos S, Aebi M, Kües U (2006) An essential gene for fruiting body initiation in the basidiomycete Coprinopsis cinerea is homologous to bacterial cyclopropane fatty acid synthase genes. Genetics 172:873–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luttik MAH, Vuralhan Z, Suir E, Braus GH, Pronk JT, Daran JM (2008) Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10:141–153

    Article  CAS  PubMed  Google Scholar 

  • Mellon FM, Casselton LA (1988) Transformation as a method of increasing gene copy number and gene expression in the basidiomycete fungus Coprinus cinereus. Curr Genet 14:451–456

    Article  CAS  PubMed  Google Scholar 

  • Mellon FM, Little PFR, Casselton LA (1987) Gene cloning and transformation in the basidiomycete fungus Coprinus cinereus: isolation and expression of the isocitrate lyase gene (acu-7). Mol Gen Genet 210:352–357

    Article  CAS  Google Scholar 

  • Miao VPW, Rountree MR, Selker EU (1995) Ecotopic integration of transforming DNA is rare among Neurospora transformants selected for gene replacement. Genetics 139:1533–1544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miozzari G, Niederberger P, Hütter R (1978) Tryptophan biosynthesis in Saccharomyces cerevisiae: control of the flux through the pathway. J Bacteriol 134:48–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mösch HU, Graf R, Schmidheini T, Braus GH (1990) Three GCN4 responsive elements act synergistically as upstream and as TATA-like elements in the yeast TRP4 promoter. EMBO J 9:2951–2957

    PubMed  PubMed Central  Google Scholar 

  • Munoz-Rivas A, Specht CA, Drummond BJ, Froeliger E, Novotny CP, Ullrich RC (1986) Transformation of the basidiomycete, Schizophyllum commune. Mol Gen Genet 205:103–106

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T (2011) Efficient gene targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 48:939–946

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Yamazaki T, Hasebe T, Kajiwara S, Watanabe A, Asada Y, Shishido K (1998) Molecular breeding of the basidiomycete Coprinus cinereus strains with high lignin-decolorization and -degradation activities using novel heterologous protein expression vectors. Appl Microbiol Biotechnol 49:285–289

    Article  CAS  PubMed  Google Scholar 

  • Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FW, vanKuyk PA, Horton JS, Grigoriev IV, Wösten HA (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963

    Article  CAS  PubMed  Google Scholar 

  • Ortega F, Cascante M, Acerenza L (2008) Kinetic properties required for sustained or paradoxical control of metabolic fluxes under large changes in enzymatic activities. J Theor Biol 252:569–573

    Article  CAS  PubMed  Google Scholar 

  • Paietta JV, Marzluf GA (1985) Gene disruption by transformation in Neurospora crassa. Mol Cell Biol 5:1554–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit NN, Russo VE (1992) Reversible inactivation of a foreign gene, hph, during the asexual cycle in Neurospora crassa transformants. Mol Gen Genet 234:412–422

    Article  CAS  PubMed  Google Scholar 

  • Perkins DD, Radford AQ, Newmeyer D, Björkman M (1982) Chromosomal loci of Neurospora crassa. Microbiol Rev 46:426–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Picknett TM, Saunders G, Ford P, Holt G (1987) Development of a gene transfer system for Penicillium chrysosporium. Curr Genet 12:449–455

    Article  CAS  Google Scholar 

  • Qi X, Su X, Guo H, Qi J, Cheng H (2015) A ku70 mutant improves gene targeting frequency in the fungal pathogen Verticillium dahlia. World J Microbiol Biotechnol 31:1889–1897

    Article  CAS  PubMed  Google Scholar 

  • Raymond CK, Pownder TA, Sexson SL (1999) General method for plasmid construction using homologous recombination. Biotechniques 26:134–141

    CAS  PubMed  Google Scholar 

  • Rossier C, Pugin A, Turian G (1985) Genetic analysis of transformation in a microconidiating strain of Neurospora crassa. Curr Genet 10:313–320

    Article  CAS  PubMed  Google Scholar 

  • Schnappauf G, Krappmann S, Braus GH (1998) Tyrosine and tryptophan act through the same binding site at the dimer interface of yeast chorismate mutase. J Biol Chem 273:17012–17017

    Article  CAS  PubMed  Google Scholar 

  • Skrzynia C, Binninger DM, Alspaugh JA, Pukkila PJ (1989) Molecular characterization of TRP1, a gene coding for tryptophan synthetase in the basidiomycete Coprinus cinereus. Gene 81:73–82

  • Suzuki K, Inoue H (2015) Recombination and gene targeting in Neurospora. In: van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi, vol 1. Springer International Publishing, Cham, pp. 255–262

    Google Scholar 

  • Tilby MJ (1976) Tryptophan biosynthesis in Coprinus lagopus: a genetic analysis of mutants. J Gen Microbiol 93:126–132

    Article  CAS  PubMed  Google Scholar 

  • Tilby MJ (1978) Inhibition of Coprinus cinereus by 5-fluoroindole. Arch Microbiol 118:301–303

    Article  CAS  Google Scholar 

  • Veal D, Casselton LA (1985) Regulation of tryptophan metabolism in Coprinus cinereus: isolation and characterisation of mutants resistant to 5-fluoroindole. Arch Microbiol 142:157–163

    Article  CAS  Google Scholar 

  • Wälti MA, Villalba C, Buser RM, Grünler A, Aebi M, Künzler M (2006) Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs. Eukaryot Cell 5:732–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Wernars K, Goosen T, Wennekes BMJ, Swart K, van den Hondel CAMJJ, van den Broek HWJ (1987) Cotransformation of Aspergillus nidulans: a tool for replacing fungal genes. Mol Gen Genet 209:71–77

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Zhang X, Qian Y, Chen X, Liu R, Zeng G, Zhao H, Fang W (2014) A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PLoS One 9:e107657

    Article  PubMed  PubMed Central  Google Scholar 

  • Zolan ME, Pukkila PJ (1986) Inheritance of DNA methylation in Coprinus cinereus. Mol Cell Biol 6:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Takeshi Kamada kindly provided strain ku70dfltF1#89, Claire Burns the vector p004iGM3. We are very thankful to Markus Aebi and Gerhard Braus for fruitful discussions on cross-pathway control. Markus Aebi advised the experiment with feeding precursors and other aromatic amino acids. Alexandra Dolynska from the Section of Forest Genetics and Forest Tree Breeding of the Göttingen University is thanked for running sequencing reactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Kües.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dörnte, B., Kües, U. Paradoxical performance of tryptophan synthase gene trp1 + in transformations of the basidiomycete Coprinopsis cinerea . Appl Microbiol Biotechnol 100, 8789–8807 (2016). https://doi.org/10.1007/s00253-016-7693-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7693-3

Keywords

Navigation