Skip to main content
Log in

Flutolanil and carboxin resistance in Coprinus cinereus conferred by a mutation in the cytochrome b 560 subunit of succinate dehydrogenase complex (Complex II)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A gene that confers resistance to the systemic fungicide flutolanil was isolated from a mutant strain of the basidiomycete Coprinus cinereus. The flutolanil resistance gene was mapped to a chromosome of approximately 3.2 Mb, and a chromosome-specific cosmid library was constructed. Two cosmid clones that were able to transform a wild-type, flutolanil-sensitive, strain of C. cinereus to resistance were isolated from the library. Analysis of a subclone containing the resistance gene revealed the presence of the sdhC gene, which encodes the cytochrome b 560 subunit of the succinate dehydrogenase (SDH) complex (Complex II) in the mitochondrial membrane. Comparison between the sdhC gene of a wild-type strain and that of a mutant strain revealed a single point mutation, which results in the replacement of Asn by Lys at position 80. Measurements of succinate-cytochrome c reductase activity in the transformants with mutant sdhC gene(s) suggest that flutolanil resistance of the fungus is caused by a decrease in the affinity of the SDH complex for flutolanil. This sdhC mutation also conferred cross-resistance against another systemic fungicide, carboxin, an anilide that is structurally related to flutolanil. In other organisms carboxin resistance mutations have been found in the genes sdhB and sdhD, but this is the first demonstration that a mutation in sdhC can also confer resistance. The mutant gene cloned in this work can be utilized as a dominant selectable marker in gene manipulation experiments in C. cinereus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2
Fig. 3
Fig. 4
Fig. 5A–C

Similar content being viewed by others

References

  • Bhattiprolu GR, Challen MP, Elliott TJ (1993) Transformation of the homobasidiomycete Coprinus bilanatus to 5-fluoroindole resistance using a mutant trp3 gene from Coprinus cinereus. Mycol Res 97:1281–1286

    CAS  Google Scholar 

  • Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J 6:835–840

    CAS  PubMed  Google Scholar 

  • Broomfield PL, Hargreaves JA (1992) A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Curr Genet 22:117–121

    CAS  PubMed  Google Scholar 

  • Challen MP, Gregory KE, Sreenivasaprasad S, Rogers CC, Cutler SB, Diaper DC, Elliott TJ, Foster GD (2000) Transformation technologies for mushrooms. In: van Griensveld LJLD (ed) Mushroom Science XV: science and cultivation of edible fungi. Balkema, Rotterdam, pp 165–172

  • Cummings WJ, Celerin M, Crodian J, Brunick LK, Zolan ME (1999) Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable marker to generate tagged, sporulation-defective mutants. Curr Genet 36:371–382

    Article  CAS  PubMed  Google Scholar 

  • Daignan-Fornier B, Valens M, Lemire BD, Bolotin-Fukuhara M (1994) Structure and regulation of SDH3, the yeast gene encoding the cytochrome b 560 subunit of respiratory complex II. J Biol Chem 269:15469–15472

    CAS  PubMed  Google Scholar 

  • Day DA, Arron GP, Laties GC (1978) The effect of carboxins on higher plant mitochondria. FEBS Lett 85:99–102

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Granado JD, Kertesz-Chaloupkova K, Aebi M, Kues U (1997) Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet 256:28–36

    Article  CAS  PubMed  Google Scholar 

  • Hägerhäll C, Hederstedt L (1996) A structural model for the membrane-integral domain of succinate:quinone oxidoreductases. FEBS Lett 389:25–31

    Article  PubMed  Google Scholar 

  • Honda Y, Irie T, Atsuji M, Watanabe T, Kuwahara M (1996) Isolation and characterization of Pleurotus ostreatus mutant strains resistant to a carboxin-derived fungicide, flutolanil. Mycoscience 37:459–461

    Google Scholar 

  • Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet 37:209–212

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Fushimi T, Yanagi SO (1998) Discrimination of species and strains of basidiomycete genus Coprinus by random amplified polymorphic DNA (RAPD) analysis. Mycoscience 39:361–365

    CAS  Google Scholar 

  • Keon JP, White GA, Hargreaves JA (1991) Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr Genet 19:475–481

    CAS  PubMed  Google Scholar 

  • Lemire BD, Oyedotun KS (2002) The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase. Biochim Biophys Acta 1553:102–116

    Article  CAS  PubMed  Google Scholar 

  • Mantovani R (1998) A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res 26:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Matsson M, Hederstedt L (2001) The carboxin-binding site on Paracoccus denitrificans succinate:quinone reductase identified by mutations. J Bioenerg Biomembr 33:99–105

    Article  CAS  PubMed  Google Scholar 

  • Matsson M, Ackrell BA, Cochran B, Hederstedt L (1998) Carboxin resistance in Paracoccus denitrificans conferred by a mutation in the membrane-anchor domain of succinate:quinone reductase. Arch Microbiol 170:27–37

    Article  CAS  PubMed  Google Scholar 

  • Motoba K, Uchida M, Tada E (1988) Mode of antifungal action and selectivity of flutolanil. Agric Biol Chem 52:1445–1449

    CAS  Google Scholar 

  • Muraguchi H, Ito Y, Kamada T, Yanagi SO (2003) A linkage map of the basidiomycete Coprinus cinereus based on random amplified polymorphic DNAs and restriction fragment length polymorphisms. Fungal Genet Biol 40:93–102

    Article  CAS  PubMed  Google Scholar 

  • Mutasa ES, Tymon AM, Götgens B, Mellon FM, Little PFR, Casselton LA (1990) Molecular organisation of an A mating type factor of the basidiomycete fungus Coprinus cinereus. Curr Genet 18:223–229

    CAS  Google Scholar 

  • Oita S, Fushimi T, Ookura T, Ito Y, Yanagi SO (1997) Flutolanil resistance as a genetic marker of Coprinus cinereus strains. Biosci Biotech Biochem 61:2145–2147

    CAS  Google Scholar 

  • Pukkila PJ, Casselton LA (1991) Molecular genetics of the agaric Coprinus cinereus. In: W. BJ, Lasure LL (eds) More gene manipulations in fungi. Academic Press, San Diego, pp 126–150

  • Rao PS, Niederpruem DJ (1969) Carbohydrate metabolism during morphogenesis of Coprinus lagopus ( sensu Buller). J Bacteriol 100:1222–1228

    CAS  PubMed  Google Scholar 

  • Rost B, Fariselli P, Casadio R (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci 5:1704–1718

    CAS  PubMed  Google Scholar 

  • Skinner W, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves J (1998) A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Curr Genet 34:393–398

    Article  CAS  PubMed  Google Scholar 

  • Skrzynia C, Binninger DM, Alspaugh JA 2nd, Pukkila PJ (1989) Molecular characterization of TRP1, a gene coding for tryptophan synthetase in the basidiomycete Coprinus cinereus. Gene 81:73–82

    Article  CAS  PubMed  Google Scholar 

  • Tucker AN, Lillich TT (1974) Effect of the systemic fungicide carboxin on electron transport function in membranes of Micrococcus denitrificans. Antimicrob Agents Chemother 6:572–578

    CAS  Google Scholar 

  • Ulrich JT, Mathre DE (1972) Mode of action of oxathiin systemic fungicides. V. Effect on electron transport system of Ustilago maydis and Saccharomyces cerevisiae. J Bacteriol 110:628–632

    CAS  PubMed  Google Scholar 

  • White GA, Thorn GD, Georgopoulos SG (1978) Oxathiin carboxamides highly active against carboxin-resistant succinic dehydrogenase complexes from carboxin-selected mutants of Ustilago maydis and Aspergillus nidulans. Pest Biochem Physiol 9:165–182

    CAS  Google Scholar 

  • Yang X, Yu L, He D, Yu CA (1998) The quinone-binding site in succinate-ubiquinone reductase from Escherichia coli. Quinone-binding domain and amino acid residues involved in quinone binding. J Biol Chem 273:31916–31923

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Wei YY, Usui S, Yu CA (1992) Cytochrome b 560 (QPs1) of mitochondrial succinate-ubiquinone reductase. Immunochemistry, cloning, and nucleotide sequencing. J Biol Chem 267:24508–24515

    CAS  PubMed  Google Scholar 

  • Zolan ME, Crittenden JR, Heyler NK, Seitz LC (1992) Efficient isolation and mapping of rad genes of the fungus Coprinus cinereus using chromosome-specific libraries. Nucleic Acids Res 20:3993–3999

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Takashi Kamada for helpful advice on constructing the chromosome-specific cosmid library, to Dr. Patricia J. Pukkila for kindly consenting to our use of the cosmid vector, and to Dr. Miriam E. Zolan for critical reading of the manuscript. This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Development of Innovative Plants and Animals using Transformation and Cloning, Project 2102)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ito.

Additional information

Communicated by E. Cerdá-Olmedo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, Y., Muraguchi, H., Seshime, Y. et al. Flutolanil and carboxin resistance in Coprinus cinereus conferred by a mutation in the cytochrome b 560 subunit of succinate dehydrogenase complex (Complex II). Mol Genet Genomics 272, 328–335 (2004). https://doi.org/10.1007/s00438-004-1060-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1060-2

Keywords

Navigation