Skip to main content
Log in

Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 04 August 2016

Abstract

Biofilms are widely used in wastewater treatment for their particular enhancement of nitrogen removal and other significant advantages. In this study, the diversity and potential functions of nitrogen removal bacteria in suspended activated sludge (AS) and biofilm of a full-scale hybrid reactor were uncovered by metagenomes (∼34 Gb), coupled with PCR-based 454 reads (>33 K reads). The results indicated that the diversity and abundance of nitrifiers and denitrifiers in biofilm did not surpass that in AS, while more nitrification and denitrification genes were indeed found in biofilm than AS, suggesting that the increased nitrogen removal ability by applying biofilm might be attributed to the enhancement of removal efficiency, rather than the biomass accumulation of nitrogen removal bacteria. The gene annotation and phylogenetic analysis results revealed that AS and biofilm samples consisted of 6.0 % and 9.4 % of novel functional genes for nitrogen removal and 18 % and 30 % of new Nitrospira species for nitrite-oxidizing bacteria, respectively. Moreover, the identification of Nitrospira-like amoA genes provided metagenomic evidence for the presence of complete ammonia oxidizer (comammox) with the functional potential to perform the complete oxidation of ammonia to nitrate. These findings have significant implications in expanding our knowledge of the biological nitrogen transformations in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alawi M, Off S, Kaya M, Spieck E (2009) Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ Microbiol Rep 1(3):184–190. doi:10.1111/j.1758-2229.2009.00029.x

    Article  CAS  PubMed  Google Scholar 

  • Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6(6):1094–1106. doi:10.1038/ismej.2011.176

    Article  CAS  PubMed  Google Scholar 

  • Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31(6):533–538. doi:10.1038/nbt.2579

    Article  CAS  PubMed  Google Scholar 

  • Baumann B, Snozzi M, Zehnder A, Van Der Meer JR (1996) Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol 178(15):4367–4374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas K, Turner SJ (2012) Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage. Appl Environ Microbiol 78(3):855–864. doi:10.1128/AEM.06570-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung J, Bae W, Lee Y-W, Rittmann BE (2007) Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors. Process Biochem 42(3):320–328. doi:10.1016/j.procbio.2006.09.002

    Article  CAS  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A (2015) Complete nitrification by Nitrospira bacteria. Nature 528(7583):504–509. doi:10.1038/nature16461

    CAS  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. doi:10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Richter RA, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DH (2012) Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6(6):1186–1199. doi:10.1038/ismej.2011.189

    Article  CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. doi:10.1126/science.1110591

    Article  PubMed  Google Scholar 

  • Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, i.e. Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol 164(1):16–23

    Article  CAS  PubMed  Google Scholar 

  • Fu B, Liao X, Ding L, Ren H (2010) Characterization of microbial community in an aerobic moving bed biofilm reactor applied for simultaneous nitrification and denitrification. World J Microbiol Biotechnol 26(11):1981–1990. doi:10.1007/s11274-010-0382-y

    Article  CAS  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(1):81–91. doi:10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E (2011) Chimeric 16S rRNA sequence formation and detection in sanger and 454-pyrosequenced PCR amplicons. Genome Res 21(3):494–504. doi:10.1101/gr.112730.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467. doi:10.1126/science.1200387

    Article  CAS  PubMed  Google Scholar 

  • Hibiya K, Terada A, Tsuneda S, Hirata A (2003) Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. J Biotechnol 100(1):23–32

    Article  CAS  Google Scholar 

  • Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17(3):377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28(17):2223–2230. doi:10.1093/bioinformatics/bts429

    Article  CAS  PubMed  Google Scholar 

  • Ishii SI, Suzuki S, Norden-Krichmar TM, Tenney A, Chain PS, Scholz MB, Nealson KH, Bretschger O (2013) A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nat Commun 4:1601. doi:10.1038/ncomms2615

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(Database issue):D109–D114. doi:10.1093/nar/gkr988

    PubMed Central  Google Scholar 

  • Kim TS, Kwon SD (2011) Nitrifying bacterial community structure of a full-scale integrated fixed-film activated sludge process as investigated by pyrosequencing. J Microbiol Biotechnol 21(3):293–298

    CAS  PubMed  Google Scholar 

  • Koops H, Böttcher B, Möller U, Pommerening-Röser A, Stehr G (1991) Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. Microbiology 137(7):1689–1699

    CAS  Google Scholar 

  • Kuypers MMM (2015) A division of labour combined. Nature 528:487–488

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Kim T-S, Yu GH, Jung J-H, Park H-D (2010) Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J Microbiol Biotechnol 20(12):1717–1723

    PubMed  Google Scholar 

  • Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damsté JSS, Spieck E, Le Paslier D (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci U S A 107(30):13479–13484. doi:10.1073/pnas.1003860107

    Article  PubMed  PubMed Central  Google Scholar 

  • Layton AC, Dionisi H, Kuo H-W, Robinson KG, Garrett VM, Meyers A, Sayler GS (2005) Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl Environ Microbiol 71(2):1105–1108. doi:10.1128/AEM.71.2.1105-1108.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480(7377):368–371. doi:10.1038/nature10576

    Article  CAS  PubMed  Google Scholar 

  • McIlroy SJ, Albertsen M, Andresen EK, Saunders AM, Kristiansen R, Stokholm-Bjerregaard M, Nielsen KL, Nielsen PH (2014) ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME J 8(3):613–624. doi:10.1038/ismej.2013.162

    Article  CAS  PubMed  Google Scholar 

  • McIlroy SJ, Starnawska A, Starnawski P, Saunders AM, Nierychlo M, Nielsen PH, Nielsen JL (2016) Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ Microbiol 18(1):50–64. doi:10.1111/1462-2920.12614

    Article  CAS  PubMed  Google Scholar 

  • Nicolella C, Van Loosdrecht M, Heijnen J (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80(1):1–33

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Alves C (2015) Do it yourself nitrification. Nat Rev Microbiol. doi:10.1038/nrmicro.2015.20

    Google Scholar 

  • Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33(17):5691–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paredes D, Kuschk P, Mbwette T, Stange F, Müller R, Köser H (2007) New aspects of microbial nitrogen transformations in the context of wastewater treatment–a review. Eng Life Sci 7(1):13–25

    Article  CAS  Google Scholar 

  • Park H-D, Noguera DR (2004) Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res 38(14):3275–3286

    Article  CAS  PubMed  Google Scholar 

  • Pinto A, Marcus D, Ijaz U, Bautista-de lose Santos Q, Dick G, Raskin L, SJ H (2015) Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. mSphere 1(1):e00054–e00015. doi:10.1128/mSphere.00054-15

    PubMed  PubMed Central  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10(11):2931–2941

    Article  CAS  PubMed  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66(12):5368–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106(45):19126–19131. doi:10.1073/pnas.0906412106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson K, Dionisi H, Harms G, Layton A, Gregory I, Sayler G (2003) Molecular assessment of ammonia- and nitrite-oxidizing bacteria in full-scale activated sludge wastewater treatment plants. Water Sci Technol 48(8):119–126

    CAS  PubMed  Google Scholar 

  • Santoro AE (2016) The do-it-all nitrifier. Science 351(6271):342–343

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholten E, Lukow T, Auling G, Kroppenstedt R, Rainey F, Diekmann H (1999) Thaurea mecharnichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 49(3):1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siripong S, Kelly JJ, Stahl DA, Rittmann BE (2006) Impact of prehybridization PCR amplification on microarray detection of nitrifying bacteria in wastewater treatment plant samples. Environ Microbiol 8(9):1564–1574

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33(4):152–155

    Google Scholar 

  • Starkenburg SR, Arp DJ, Bottomley PJ (2008) Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. Environ Microbiol 10(11):3036–3042

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kessel MA, Speth DR, Albertsen M, Nielsen PH, den Camp HJO, Kartal B, Jetten MS, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559. doi:10.1038/nature16459

    PubMed  Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13(3):218–227

    Article  CAS  PubMed  Google Scholar 

  • Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 144(1):1–7

    Article  Google Scholar 

  • Wittebolle L, Vervaeren H, Verstraete W, Boon N (2008) Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl Environ Microbiol 74(1):286–293

    Article  CAS  PubMed  Google Scholar 

  • Xia S, Li J, Wang R (2008) Nitrogen removal performance and microbial community structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm reactor. Ecol Eng 32(3):256–262

    Article  Google Scholar 

  • Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7(5):e38183. doi:10.1371/journal.pone.0038183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Shao M, Ye L (2012) 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6:1137–1147. doi:10.1038/ismej.2011.188

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Peng Y, Li B, Guo J, Yang Q, Wang S (2008) Biological removal of nitrogen from wastewater. Reviews of environmental contamination and toxicology. Springer, pp 159–195

  • Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38(12):e132–e132. doi:10.1093/nar/gkq275

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Yuanqing Chao, Dr. Yanping Mao, and Dr. Ke Yu wish to thank HKU for the postgraduate studentship. Dr. Yanping Mao and Dr. Ke Yu appreciate HKU for the postdoctoral fellowship. The technical assistance of Dr. Feng Ju and Ms. Vicky Fung is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhang.

Ethics declarations

Funding

This study was funded by the Hong Kong General Research Fund (grant number 7198/10E) and new teachers’ scientific research project of Shenzhen University (2016008).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Yuanqing Chao and Yanping Mao contribute equally to this work.

Electronic supplementary material

ESM 1

(PDF 756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, Y., Mao, Y., Yu, K. et al. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Appl Microbiol Biotechnol 100, 8225–8237 (2016). https://doi.org/10.1007/s00253-016-7655-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7655-9

Keywords

Navigation