Skip to main content
Log in

High-throughput screening methods for nitrilases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrilases have been widely acknowledged as important alternatives to chemical catalysts, as they have been proved to transform an immense variety of nitriles under mild conditions and often in a stereoselective or regioselective manner. In the discovery of new nitrilases to establish viable industrial processes, screening plays an important role in identifying which subset of candidates contains a nitrilase of interest from a collection of organisms, clone banks, or enzyme libraries. However, the traditional methods for evaluating the nitrilases are a time-consuming, laborious, and costly process and have been regarded as a bottleneck in developing these nitrilases as industrial biocatalysts. In the past few years, a number of high-throughput screening methods have been developed for rapid evaluation and identification of nitrilases. Here, we review the various methodologies developed for high-throughput screening of nitrilases and focus on their advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arnao MB, Acosta M, Rio JAD, García-Cánovas F (1990) Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochim Biophys Acta 1038:85–89

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Kaul P, Sharma R, Banerjee UC (2003a) A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase-producing microorganisms using pH sensitive indicators. J Biomol Screen 8:559–565

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Mcrobiol Biotechnol 60:33–44

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2003b) A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnol Appl Biochem 37:289–293

    Article  CAS  PubMed  Google Scholar 

  • Becker S, Schmoldt HU, Adams TM, Wilhelm S, Kolmar H (2004) Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr Opin Biotechnol 15:323–329

    Article  CAS  PubMed  Google Scholar 

  • Bergeron S, Chaplin DA, Edwards JH, Ellis BSW, Hill CL, Holt-Tiffin K, Knight JR, Mahoney T, Osborne AP, Ruecroft G (2006) Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Org Process Res Dev 10:661–665

    Article  CAS  Google Scholar 

  • Bordier F, Stam M, Darii E, Tricot S, Fossey A, Rohault J, Debard A, Mariage A, Pellouin V, Petit JL (2014) Large α-aminonitrilase activity screening of nitrilase superfamily members: access to conversion and enantiospecificity by LC–MS. J Mol Catal B-Enzym 79–88

  • Brenner C (2002) Catalysis in the nitrilase superfamily. Curr Opin Biotechnol 12:775–782

    CAS  Google Scholar 

  • Chen J, Zheng RC, Zheng YG, Shen YC (2009) Microbial transformation of nitriles to high-value acids or amides. Adv Biochem Eng Biotechnol 113:33–77

    CAS  PubMed  Google Scholar 

  • Childs RE, Bardsley WG (1975) The steady-state kinetics of peroxidase with 2,2′-azino-di-(3-Ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadd MR, Sharp DCA, Pettman AJ, Knowles CJ (2000) Real-time monitoring of nitrile biotransformations by mid-infrared spectroscopy. J Microbiol Meth 41:69–75

    Article  CAS  Google Scholar 

  • DeSantis, G., Chi, E., Chaplin, J.A., Milan, A., Short, J.M., Weiner, D.P., Madden, M., Madden, D., Burk, M.J., Robertson, D.E., (2010) Nitirlase, US 7,651,849 B2

  • DeSantis G, Wong K, Farwell B, Chatman K, Zhu ZL, Tomlinson G, Huang HJ, Tan XQ, Bibbs L, Chen P, Kretz K, Burk MJ (2003) Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). J Am Chem Soc 125:11476–11477

    Article  CAS  PubMed  Google Scholar 

  • DeSantis G, Zhu Z, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP, Robertson DE, Burk MJ (2002) An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124:9024–9025

    Article  CAS  PubMed  Google Scholar 

  • Doak DL, Phillips JA (1998) In situ monitoring of an Escherichia coli fermentation using a diamond composition ATR probe and mid-infrared spectroscopy. Biotechnol Prog 15:529–539

    Article  Google Scholar 

  • Dong HP, Liu ZQ, Zheng YG, Shen YC (2010) Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis. Appl Microbiol Biotechnol 87:1335–1345

    Article  CAS  PubMed  Google Scholar 

  • Goddard JP, Reymond JL (2004) Enzyme assays for high-throughput screening. Curr Opin Biotechnol 15:314–322

    Article  CAS  PubMed  Google Scholar 

  • Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:1–18

    Article  CAS  Google Scholar 

  • Gong JS, Lu ZM, Li H, Zhou ZM, Shi JS, Xu ZH (2013) Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biotechnol 97:6603–6611

    Article  CAS  PubMed  Google Scholar 

  • Greving M, Cheng XL, Reindl W, Bowen B, Deng K, Louie K, Nyman M, Cohen J, Singh A, Simmons B, Adams P (2012) Acoustic deposition with NIMS as a high-throughput enzyme activity assay. Anal Bioanal Chem 403:707–711

    Article  CAS  PubMed  Google Scholar 

  • Gülçin İ, Küfrevioglu Öİ, Oktay M, Büyükokuroglu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215

    Article  PubMed  Google Scholar 

  • Harrick N (1979) Internal reflection spectroscopy. Wiley, New York

    Google Scholar 

  • He YC, Ma CL, Xu JH, Zhou L (2010) A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry. Appl Microbiol Biotechnol 89:817–823

    Article  PubMed  Google Scholar 

  • He YC, Xu JH, Xu Y, Ouyang LM, Pan J (2007) Biocatalytic synthesis of (R)-(−)-mandelic acid from racemic mandelonitrile by a newly isolated nitrilase-producer Alcaligenes sp ECU0401. Chinese Chem Lett 18:677–680

  • Hu JG, Wang YJ, Zheng YG, Shen YC (2007) Isolation of glycolonitrile-hydrolyzing microorganism based on colorimetric reaction. Enzym Microb Technol 41:244–249

    Article  CAS  Google Scholar 

  • Janes LE, Lőwendahl AC, Kazlauskas RJ (1998) Quantitative screening of hydrolase libraries using pH indicators: identifying active and enantioselective hydrolases. Chem Eur J 4:2324–2331

    Article  CAS  Google Scholar 

  • Kasai Y, Tanimura T, Tamura Z (1975) Spectrophotometric determination of carboxylic acids by the formation of hydroxamic acids with dicyclohexylcarbodiimide. Anal Chem 47:34–37

    Article  CAS  PubMed  Google Scholar 

  • Kaul P, Banerjee A, Mayilraj S, Banerjee UC (2004) Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(-)-mandelic acid by new bacterial isolates. Tetrahedron Asymmetr 15:207–211

    Article  CAS  Google Scholar 

  • Layh N, Hirrlinger B, Stolz A, Knackmuss HJ (1997) Enrichment strategies for nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 47:668–674

    Article  CAS  Google Scholar 

  • Leemhuis H, Kelly RM, Dijkhuizen L (2009) Directed evolution of enzymes: library screening strategies. Iubmb Life 61:222–228

    Article  CAS  PubMed  Google Scholar 

  • Liu ZQ, Li FF, Cheng F, Zhang T, You ZY, Xu JM, Xue YP, Zheng YG, Shen YC (2011) A novel synthesis of iminodiacetic acid: biocatalysis by whole Alcaligenes faecalis ZJB-09133 cells from iminodiacetonitrile. Biotechnol Prog 27:698–705

    Article  CAS  PubMed  Google Scholar 

  • Liu ZQ, Zhang XH, Xue YP, Xu M, Zheng YG (2014) Improvement of Alcaligenes faecalis nitrilase by Gene Site Saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(−)-mandelic acid. J Agric Food Chem 62:4685–4694

    Article  CAS  PubMed  Google Scholar 

  • Martínková L, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14:130–137

    Article  PubMed  Google Scholar 

  • Martínková L, Vejvoda V, Křen V (2008) Selection and screening for enzymes of nitrile metabolism. J Biotechnol 133:318–326

    Article  PubMed  Google Scholar 

  • Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    Article  CAS  PubMed  Google Scholar 

  • Morís-Varas F, Shah A, Aikens J, Nadkarni NP, Rozzell JD, Demirjian DC (1999) Visualization of enzyme-catalyzed reactions using pH indicators: rapid screening of hydrolase libraries and estimation of the enantioselectivity. Bioorg Med Chem 7:2183–2188

    Article  PubMed  Google Scholar 

  • Ngo TT, Phan APH, Yam CF, Lenhoff HM (2002) Interference in determination of ammonia with the hypochlorite-alkaline phenol method of Berthelot. Anal Chem 54:46–49

    Article  Google Scholar 

  • Nilsson-Ehle P, Schotz MC (1976) A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res 17:536–541

    CAS  PubMed  Google Scholar 

  • Panova A, Mersingera LJ, Liu Q, Foo T, Roe DC, Spillan WL, Sigmund AE, Ben-Bassat A, Wagner LW, O’Keefe DP, Wu S, Petrillo KL, Payne MS, Breske ST, Gallagher FG, DiCosimo R (2007) Chemoenzymatic synthesis of glycolic acid. Adv Synth Catal 349:1462–1474

    Article  CAS  Google Scholar 

  • Reetz MT (2003) Select protocols of high-throughput ee-screening systems for assaying enantioselective enzymes. Humana Press, New York

    Book  Google Scholar 

  • Reisinger C, Assema FV, Schürmann M, Hussain Z, Remler P, Schwab H (2006) A versatile colony assay based on NADH fluorescence. J Mol Catal B-Enzym 39:149–155

    Article  CAS  Google Scholar 

  • Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70:2429–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoshkumar M, Nayak AS, Anjaneya O, Karegoudar TB (2010) A plate method for screening of bacteria capable of degrading aliphatic nitriles. J Ind Microbiol Biotechnol 37:111–115

    Article  CAS  PubMed  Google Scholar 

  • Schoevaart R, van Vliet M (2007) Chiral technology: industrial biocatalysis with standard hydrolytic bulk enzymes. Special Chem Mag 27:38–39

    CAS  Google Scholar 

  • Schreiner U, Hecher B, Obrowsky S, Waich K, Klempier N, Steinkellner G, Gruber K, Rozzell JD, Glieder A, Winkler M (2010) Directed evolution of Alcaligenes faecalis nitrilase. Enzyme Microb Techechnol 47:140–146

    Article  CAS  Google Scholar 

  • Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345:425–435

    Article  CAS  Google Scholar 

  • Shen M, Zheng YG, Liu ZQ, Shen YC (2009) Production of acrylic acid from acrylonitrile by immobilization of Arthrobacter nitroguajacolicus ZJUTB06-99. J Microbiol Biotechnol 19:582–587

    CAS  PubMed  Google Scholar 

  • Singh R, Sharma R, Tewari N, Geetanjali, Rawat DS (2006) Nitrilase and its application as a green catalyst. Chem Biodivers 3:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Vergne-Vaxelaire C, Bordier F, Fossey A, Besnard-Gonnet M, Debard A, Mariage A, Pellouin V, Perret A, Petit JL, Stam M, Salanoubat M, Weissenbach J, De Berardinis V, Zaparucha A (2013) Nitrilase activity screening on structurally diverse substrates: providing biocatalytic tools for organic synthesis. Adv Synth Catal 355:1763–1779

    Article  CAS  Google Scholar 

  • Viccaro, J.P., Ambye, E.L., (1972) Colorimetric determination of glycolic acid with β-naphthol. Microchem J: 710-718

  • Wang HL, Sun HH, Wei DZ (2013) Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. BMC Biotechnol 13:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang MX (2005) Enantioselective biotransformations of nitriles in organic synthesis. Top Catal 35:117–130

    Article  Google Scholar 

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • Wu SJ, Fogiel AJ, Petrillo KL, Hann EC, Mersinger LJ, DiCosimo R, O’Keefe DP, Ben-Bassat A, Payne MS (2007) Protein engineering of Acidovorax facilis 72W nitrilase for bioprocess development. Biotechnol Bioeng 97:689–693

    Article  CAS  PubMed  Google Scholar 

  • Wu SJ, Fogiel AJ, Petrillo KL, Jackson RE, Parker KN, Dicosimo R, Ben-Bassat A, O’Keefe DP, Payne MS (2008) Protein engineering of nitrilase for chemoenzymatic production of glycolic acid. Biotechnol Bioeng 99:717–720

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Bao ZH, Zhao HM (2015) High throughput screening and selection methods for directed enzyme evolution. Ind Eng Chem Res 54:4011–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue YP, Liu ZQ, Xu M, Wang YJ, Zheng YG (2011a) Efficient separation of (R)-(-)-mandelic acid biosynthesized from (R,S)-mandelonitrile by nitrilase using ion-exchange process. J Chem Technol Biotechnol 86:391–397

  • Xue YP, Liu ZQ, Xu M, Wang YJ, Zheng YG, Shen YC (2010) Enhanced biotransformation of (R,S)-mandelonitrile to (R)-(-)-mandelic acid with in situ production removal by addition of resin. Biochem Eng J 53:143–149

  • Xue YP, Shi CC, Xu Z, Jiao B, Liu ZQ, Huang JF, Zheng YG, Shen YC (2015) Design of nitrilases with superior activity and enantioselectivity towards sterically hindered nitrile by protein engineering. Adv Synth Catal 357:1741–1750

    Article  CAS  Google Scholar 

  • Xue YP, Xu M, Chen HS, Liu ZQ, Wang YJ, Zheng YG (2013) A novel integrated bioprocess for efficient production of (R)-(-)-mandelic acid with immobilized Alcaligenes faecalis ZJUTB10. Org Process Res Dev 17:213–220

  • Xue YP, Xu SZ, Liu ZQ, Zheng YG, Shen YC (2011b) Enantioselective biocatalytic hydrolysis of (R,S)-mandelonitrile for production of (R)-(-)-mandelic acid by a newly isolated mutant strain. J Ind Microbiol Biotechnol 38:337–345

    Article  CAS  PubMed  Google Scholar 

  • Yazbeck DR, Durao PJ, Xie ZY, Tao JH (2006) A metal ion-based method for the screening of nitrilases. J Mol Catal B-Enzym 39:156–159

    Article  CAS  Google Scholar 

  • Zhang JF, Liu ZQ, Zheng YG, Shen YC (2011) Screening and characterization of microorganisms capable of converting iminodiacetonitrile to iminodiacetic acid. Eng Life Sci 12:69–78

    Article  Google Scholar 

  • Zheng YG, Chen J, Liu ZQ, Wu MH, Xing LY, Shen YC (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77:985–993

    Article  CAS  PubMed  Google Scholar 

  • Zheng YG, Xue YP, Liu ZQ, Zheng RC, Shen YC (2009) Applications of nitrile converting enzymes in the production of fine chemicals. Chin J Chem Eng 25:1795–1807

    CAS  Google Scholar 

  • Zhou DJ, Ouyang LM, Xu JH, Zhou PP, Pan J (2009) Rapid screening of nitrilase producing strains from soil. J East China Univ Sci Technol 35:545–548

    CAS  Google Scholar 

  • Zhu Q, Fan A, Wang YS, Zhu XQ, Wang Z, Wu MH, Zheng YG (2007) Novel sensitive high-throughput screening strategy for nitrilase-producing strains. Appl Environ Microbiol 73:6053–6057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Ethics declarations

Funding

This work was funded by the National Natural Science Foundation of China (No. 31,170,761 and the National High Technology Research and Development Program (863 Program) (No. 2011AA02A210).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, YP., Yang, YK., Lv, SZ. et al. High-throughput screening methods for nitrilases. Appl Microbiol Biotechnol 100, 3421–3432 (2016). https://doi.org/10.1007/s00253-016-7381-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7381-3

Keywords

Navigation