Skip to main content
Log in

New insights into the structure and dynamics of actinomycetal community during manure composting

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Despite advancing knowledge about the functional role of actinomycetes in degrading lignocellulosic materials, definitive knowledge concerning the diversity and dynamics of the actinomycetal community in composting is still lacking. In this study, real-time polymerase chain reaction (PCR) coupled with denaturing gradient gel electrophoresis (DGGE) and clone library construction were applied to investigate actinomycetal diversity and dynamics in a pilot-scale composting. Quantitative real-time PCR data revealed that actinomycetes accounted for 18–86 % of bacteria and that the fraction peaked during the maturing phase, indicating that Actinobacteria were critical to the compost ecosystem. Qualitatively, actinomycetal communities displayed distinct temporal variations during composting. Fourteen distinct genera of actinomycetes and an unknown group were observed in manure composts. Redundancy analysis indicated that temperature exerted an influence over the actinomycetal communities. Specifically, pathogenic Corynebacterium species dominated in the initial phase, whereas the genera Saccharomonospora and Thermobifida were abundant in the thermophilic phase. In maturing composts, mesophilic Micrococcineae members were most prevalent. The dominant thermophiles along with Micrococcineae may jointly facilitate the degradation of lignocellulosic materials during composting. Together, our research revealed a more detailed ecological and potential functional role for actinomycetes in the compost ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amner W, McCarthy AJ, Edwards C (1988) Quantitative assessment of factors affecting the recovery of indigenous and released thermophilic bacteria from compost. Appl Environ Microbiol 54(12):3107–3112

    PubMed Central  PubMed  CAS  Google Scholar 

  • Anderson IC, Cairney JW (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6(8):769–779

    Article  PubMed  CAS  Google Scholar 

  • Cahyani VR, Matsuya K, Asakawa S, Kimura M (2003) Succession and phylogenetic composition of bacterial communities responsible for the composting process of rice straw estimated by PCR-DGGE analysis. Soil Sci Plant Nutr 49(4):619–630

    Article  CAS  Google Scholar 

  • Chen Y, Inbar Y, Hadar Y, Malcolm R (1989) Chemical properties and solid-state CPMAS 13C-NMR of composted organic matter. Sci Total Environ 81:201–208

    Article  Google Scholar 

  • Ghazifard A, Kasra-Kermanshahi R, Far ZE (2001) Identification of thermophilic and mesophilic bacteria and fungi in Esfahan (Iran) municipal solid waste compost. Waste Manag Res 19(3):257–261

    Article  PubMed  CAS  Google Scholar 

  • Gray K, Sherman K, Biddlestone A (1971) A review of composting: Part 1. Process Biochem 6(6):32–36

    CAS  Google Scholar 

  • Haider K, Trojanowski J (1975) Decomposition of specifically 14C-labelled phenols and dehydropolymers of coniferyl alcohol as models for lignin degradation by soft and white rot fungi. Arch Microbiol 105(1):33–41

    Article  CAS  Google Scholar 

  • Kisand V, Wikner J (2003) Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J Microbiol Meth 54(2):183–191

    Article  CAS  Google Scholar 

  • Leton T, Stentiford E (1990) Control of aeration in static pile composting. Waste Manag Res 8(4):299–306

    Article  CAS  Google Scholar 

  • Liu J, Wu W, Chen C, Sun F, Chen Y (2011) Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems. Appl Microbiol Biotechnol 91(6):1659–1675

    Article  PubMed  CAS  Google Scholar 

  • McCarthy A (1987) Lignocellulose-degrading actinomycetes. FEMS Microbiol Lett 46(2):145–163

    Article  CAS  Google Scholar 

  • Michel F Jr, Marsh T, Reddy C (2002) Bacterial community structure during yard trimmings composting. Microbiology of composting. Springer-Verlag, Berlin, pp 25–42

    Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73(1):127–141

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    PubMed Central  PubMed  CAS  Google Scholar 

  • Narihiro T, Abe T, Yamanaka Y, Hiraishi A (2004) Microbial population dynamics during fed-batch operation of commercially available garbage composters. Appl Microbiol Biotechnol 65(4):488–495

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Okayama N, Savichtcheva O, Ito T (2007) Quantification of host-specific Bacteroides–Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl Microbiol Biotechnol 74(4):890–901

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR–single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66(3):930–936

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rastogi G, Muppidi GL, Gurram RN, Adhikari A, Bischoff KM, Hughes SR, Apel WA, Bang SS, Dixon DJ, Sani RK (2009) Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Ind Microbiol Biotechnol 36(4):585–598

    Article  PubMed  CAS  Google Scholar 

  • Raut M, Prince William S, Bhattacharyya J, Chakrabarti T, Devotta S (2008) Microbial dynamics and enzyme activities during rapid composting of municipal solid waste–a compost maturity analysis perspective. Bioresour Technol 99(14):6512–6519

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Azcon R, Baca M (1996) Chemical changes in humic substances from compost due to incubation with ligno-cellulolytic microorganisms and effects on lettuce growth. Appl Microbiol Biotechnol 45(6):857–863

    Article  CAS  Google Scholar 

  • Schäfer J, Jäckel U, Kämpfer P (2010) Development of a new PCR primer system for selective amplification of Actinobacteria. FEMS Microbiol Lett 311(2):103–112

    Article  PubMed  CAS  Google Scholar 

  • Sonia MT, Hafedh B, Abdennaceur H, Ali G (2011) Studies on the ecology of actinomycetes in an agricultural soil amended with organic residues: II. Assessment of enzymatic activities of Actinomycetales isolates. World J Microbiol Biotechnol 27(10):2251–2259

    Article  Google Scholar 

  • Stach JE, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5(10):828–841

    Article  PubMed  CAS  Google Scholar 

  • Steger K, Jarvis Å, Vasara T, Romantschuk M, Sundh I (2007a) Effects of differing temperature management on development of Actinobacteria populations during composting. Res Microbiol 158(7):617–624

    Article  PubMed  CAS  Google Scholar 

  • Steger K, Sjögren Å, Jarvis Å, Jansson JK, Sundh I (2007b) Development of compost maturity and Actinobacteria populations during full‐scale composting of organic household waste. J Appl Microbiol 103(2):487–498

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tang JC, Maie N, Tada Y, Katayama A (2006) Characterization of the maturing process of cattle manure compost. Process Biochem 41(2):380–389

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183

    Article  CAS  Google Scholar 

  • Van Etta LL, Filice GA, Ferguson RM, Gerding DN (1983) Corynebacterium equi: a review of 12 cases of human infection. Rev Infect Dis 5(6):1012–1018

    Article  PubMed  Google Scholar 

  • Wang Z, Jin Y, Wu H, Tian Z, Wu Y, Xie X (2012) A novel, alkali-tolerant thermostable xylanase from Saccharomonospora viridis: direct gene cloning, expression and enzyme characterization. World J Microbiol Biotechnol 28(8):2741–2748

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Soo R, Cobb R, Negri AP (2010) Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME J 5(4):759–770

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiao Y, Zeng GM, Yang ZH, Ma YH, Huang C, Xu ZY, Huang J, Fan CZ (2011) Changes in the actinomycetal communities during continuous thermophilic composting as revealed by denaturing gradient gel electrophoresis and quantitative PCR. Bioresour Technol 102(2):1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann W, Winter B, Broda P (1988) Xylanolytic enzyme activities produced by mesophilic and thermophilic actinomycetes grown on graminaceous xylan and lignocellulose. FEMS Microbiol Lett 55(2):181–185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank P.J. Strong for his assistance in improving the manuscript. This work was financially supported by China National Critical Project for Science and Technology on Water Pollution Prevention and Control with Grant No. 2012ZX07101012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixiang Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Guo, X., Deng, H. et al. New insights into the structure and dynamics of actinomycetal community during manure composting. Appl Microbiol Biotechnol 98, 3327–3337 (2014). https://doi.org/10.1007/s00253-013-5424-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5424-6

Keywords

Navigation