Skip to main content

Advertisement

Log in

Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3′,4,′5′-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bambeke FV, Glupczynski Y, Plesiat P, Pechère JC, Tulkens PM (2003) Antibiotic efflux pumps in prokaryotic cells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J Antimicrob Chemother 51:1055–65

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2013) Multidrug-resistant organism & clostridium difficile infection (MDRO/CDI) module. CDC 12:2–42

    Google Scholar 

  • Chanda D, Shanker K, Pal A, Luqman S, Bawankule DU, Mani D, Darokar MP (2009) Safety evaluation of trikatu, a generic ayurvedic medicine in Charles Foster rat. J Toxicol Sci 34:99–108

    Article  PubMed  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically—ninth edition: approved standard M07-A9. CLSI, Wayne

    Google Scholar 

  • Craig WA, Gudmundsson S (1991) The postantibiotic effect. In: Lorian V (ed) Antibiotics in laboratory medicine, 3rd edn. Williams & Wilkins, Baltimore, pp 403–31

    Google Scholar 

  • Datta S, Wattal C, Goel N, Oberoi JK, Raveendran R, Prasad KJ (2012) A ten year analysis of multidrug resistant blood stream infections caused by Escherichia coli & Klebsiella pneumoniae in tertiary care hospital. Indian J Med Res 135:907–12

    PubMed Central  PubMed  Google Scholar 

  • Dixon RE (2011) Control of health care associated infections 1961–2011. CDC MMWR 60:S58–S63

    Google Scholar 

  • Dwivedi GR, Gupta S, Roy S, Kalani K, Pal A, Thakur JP, Saikia D, Sharma A, Darmwal NS, Darokar MP, Srivastava SK (2013) Tricyclic sesquiterpenes from Vetiveria zizanoides (L.) Nash as antimycobacterial agents. Chem Biol Drug Des 82:587–594

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi GR, Yadav DK, Singh V, Srivastava SK, Khan F, Darmwal NS, Darokar MP (2014) 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli. Chem Biol Drug Des 83:482–492

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi GR, Maurya A, Yadav DK, Khan F, Darokar MP, Srivastava SK (2015) Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid and multidrug resistant Escherichia coli. Chem Biol Drug Des 86:272–283

    Article  PubMed  CAS  Google Scholar 

  • Eliopoulos GM, Wennersten CB (2002) Antimicrobial activity of quinupristin–dalfopristin combined with other antibiotics against vancomycin resistant enterococci. Antimicrob Agents Chemother 46:1319–24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eliopoulus GM, Moellering RCJ (1996) Antimicrobial combinations. In: Lorian V (ed) Antibiotics in laboratory medicine, 4th edn. Williams & Wilkins, Baltimore, pp 330–6

    Google Scholar 

  • Eswaran J, Koronakis E, Higgins MK, Hughes C, Koronakis V (2004) Three’s company: component structures bring a closer view of tripartite drug efflux pumps. Curr Opin Struct Biol 14:741–47

    Article  PubMed  CAS  Google Scholar 

  • Gallay P, Heumann D, Le Roy D, Barras C, Glauser MP (1994) Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc Natl Acad Sci U S A 91:7922–6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gaynes R, Edwards JR (2005) Overview of nosocomial infections caused by gram negative bacilli. Clin Infect Dis 41:848–854

    Article  PubMed  Google Scholar 

  • Gertsch J (2011) Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures. Planta Med 77:1086–98

    Article  PubMed  CAS  Google Scholar 

  • Glavinas H, Méhn D, Jani M, Oosterhuis B, Heredi-Szabo K, Krajcsi P (2008) Utilization of membrane vesicle preparations to study drug-ABC transporter interactions. Expert Opin Drug Metab Toxicol 4:721–32

    Article  PubMed  CAS  Google Scholar 

  • Gould IM (2009) Antibiotic resistance: the perfect storm. Int J Antimicrob Agents 4:S2–S5

    Article  CAS  Google Scholar 

  • Gupta VK, Verma S, Pal A, Srivastava SK, Srivastava PK, Darokar MP (2013) In vivo efficacy and synergistic interaction of 16α-hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide, a clerodane diterpene from Polyalthia longifolia against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 97:9121–9131

    Article  PubMed  CAS  Google Scholar 

  • Hassani M (2014) The crisis of resistant gram-negative bacterial infections: is there any hope for ESKAPE? Clin Infect Dis 1:1005

    Google Scholar 

  • Hawkey PM, Jones AM (2009) The changing epidemiology of resistance. J Antimicrob Chemother 64:S1–S10

    Article  CAS  Google Scholar 

  • Heisig P, Tschorny R (1994) Characterization of fluoroquinolone-resistant mutants of Escherichia coli selected in vitro. Antimicrob Agents Chemother 38:1284–91

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hurdle JG, O’Neill AJ, Chopra I, Lee RE (2011) Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9:62–75

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Infectious Diseases Society of America (2010) The 10 × 20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50:1081–1083

    Article  Google Scholar 

  • Ivanova A, Batovska D, Engi H, Ocsovszki I, Kostova I, Molnar J (2008) MDR-reversal activity of chalcones. In Vivo 22:379–384

    PubMed  CAS  Google Scholar 

  • Jia J, ZhuF MF, Cao Z, Li Y, Chen YZ (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8:111–28

    Article  PubMed  CAS  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  PubMed  CAS  Google Scholar 

  • Kaatz GW, Moudgal VV, Seo SM, Kristiansen JE (2003) Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 47:719–26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khan AA, Slifer TR, Araujo FG, Suzuki Y, Remington JS (2000) Protection against lipopolysaccharide-induced death by fluoroquinolones. Antimicrob Agents Chemother 44:3169–73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khan IA, Mirza ZM, Kumar A, Verma V, Qazi GN (2006) Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 50:810–812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–9

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64(S):i29–i36

    Article  PubMed  CAS  Google Scholar 

  • Lomovskaya O, Watkins WJ (2001) Efflux pumps: their role in antibacterial drug discovery. Curr Med Chem 8:1699–1711

    Article  PubMed  CAS  Google Scholar 

  • Lubelski J, Konings WN, Driessen AJM (2007) Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 71:463–476

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marquez B (2005) Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87:1137–1147

    Article  PubMed  CAS  Google Scholar 

  • Martins M, Sujata GD, Fanning S, Kristiansen JE, Molnar J, Pagès JM, Schelz Z, Spengler G, Viveiros M, Amaral L (2008) Potential role of non-antibiotics in the treatment of multidrug-resistant gram-negative infections: mechanisms for their direct and indirect activities. Int J Antimicrob Agents 31:198–208

    Article  PubMed  CAS  Google Scholar 

  • Maurya A, Dwivedi GR, Darokar MP, Shrivastava SK (2013) Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid resistant Escherichia coli. Chem Biol Drug Des 81:484–90

    Article  PubMed  CAS  Google Scholar 

  • McMurry LM, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A 77:3974–7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Negi AS, Darokar MP, Chattopadhyay SK, Garg A, Bhattacharya AK, Srivastava V, Khanuja SP (2005) Synthesis of a novel plant growth promoter from gallic acid. Bioorg Med Chem Lett 15:1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–46

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in enterobacteriaceae: here is the storm! Trends Mol Med 18:263–72

    Article  PubMed  CAS  Google Scholar 

  • O’Neill LA (2006) Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov 5:549–563

    Article  PubMed  CAS  Google Scholar 

  • Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1

    Article  PubMed  Google Scholar 

  • Pages JM, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of gram-negative bacteria. Biochim Biophys Acta 1794:826–833

    Article  PubMed  CAS  Google Scholar 

  • Parihar S, Gupta A, Chaturvedi AK, Agarwal J, Luqman S, Changkija B, Manohar M, Chanda D, Chanotiya CS, Shanker K, Dwivedi A, Konwar R, Negi AS (2012) Gallic acid based steroidal phenstatin analogues for selective targeting of breast cancer cells through inhibiting tubulin polymerisation. Steroids 77:878–886

    Article  PubMed  CAS  Google Scholar 

  • Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 362:1804–13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Poole K (2001) Multidrug resistance in gram-negative bacteria. Curr Opin Microbiol 4:500–8

    Article  PubMed  CAS  Google Scholar 

  • Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176

    Article  PubMed  CAS  Google Scholar 

  • Reddy GD, Kumar KNVP, Duganath N, Raavi D, Amitha K (2012) ADMET, docking studies & binding energy calculations of some novel ACE-inhibitors for the treatment of diabetic nephropathy. Int J Drug Dev Res 4:268–282

    Google Scholar 

  • Richards CD, Gauldie J (1995) Role of cytokines in acute phase response. In: Agarwal BB, Puri RK (eds) Human cytokines: their role in disease and therapy. Blackwell Science, Cambridge, pp 253–69

    Google Scholar 

  • Roberts MC (2003) Tetracycline therapy: update. Clin Infect Dis 36:462–7

    Article  PubMed  CAS  Google Scholar 

  • Roberts L, Simpson S (2008) Deadly defiance. Science 321:355–361

    Article  PubMed  CAS  Google Scholar 

  • Saxena HO, Faridi U, Srivastava S, Kumar JK, Darokar MP, Luqman S, Chanotiya CS, Krishna V, Negi AS, Khanuja SP (2008) Gallic acid based indanone derivatives as anticancer agents. Bioorg Med Chem Lett 18:3914–3918

    Article  PubMed  CAS  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med 189:1777–1782

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Speer BS, Shoemaker NB, Salyers AA (1992) Bacterial resistance to tetracycline: mechanisms, transfer and clinical significance. Clin Microbiol Rev 5:387–399

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spellberg B, Bartlett JG, Gilbert DN (2013) The future of antibiotics and resistance. N Engl J Med 368:299–302

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K (2000) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5*-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci U S A 97:1433–1437

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ueno S, Ohnuma R, Koyama N (2005) Cloning, sequencing and functional expression in E. Coli of the gene for a P-type TET+- ATPase of the facultative anaerobic alkaliphile, Exiguobacterium auranticum. Biochim Biophys Acta 1727:162–168

    Article  PubMed  CAS  Google Scholar 

  • Tikhonova EB, Zgurskaya HI (2004) AcrA, AcrB, andTolC of Escherichia coli form a stable inter membrane multidrug efflux complex. J Biol Chem 279:32116–24

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay HC, Dwivedi GR, Darokar MP, Chaturvedi V, Srivastava SK (2012) Bioenhancing and antimycobacterial agents from Ammania, multiflora. Planta Med 78:79–81

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay HC, Dwivedi GR, Roy S, Sharma A, Darokar MP, Srivastava SK (2014) Phytol derivatives as drug resistance reversal agents. ChemMedChem 9:1860–1868

    PubMed  CAS  Google Scholar 

  • Vaara M (1993) Antibiotic-super susceptible Mutants of Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother 37:2255–2260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van der Donk CF, van de Bovenkamp JH, De Brauwer EI, De Mol P, Feldhoff KH, Kalka-Moll WM, Nys S, Thoelen I, Trienekens TA, Stobberingh EE (2012) Antimicrobial resistance and spread of multi drug resistant Escherichia coli isolates collected from nine urology services in the Euregion Meuse-Rhine. PLoS One 7:e47707

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Viveiros M, Jesus A, Brito M, Leandro C, Martins M, Ordway D, Molnar AM, Molnar J, Amaral L (2005) Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Antimicrob Agents Chemother 49:3578–82

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Viveiros M, Dupont M, Rodrigues L, Couto I, Davin-Regli A, Martins M, Pagès JM, Amaral L (2007) Antibiotic stress, genetic response and altered permeability of E. coli. PLoS ONE 2:e365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Viveiros M, Rodrigues L, Martins M, Couto I, Spengler G, Martins A, Amaral L (2010) Evaluation of efflux activity of bacteria by a semi-automated fluorometric system. Methods Mol Biol 642:159–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Fellowship to GRD from Council of Scientific and Industrial Research (CSIR), New Delhi is gratefully acknowledged. The help of Dr. Mastan Singh and Dr M.K. Gupta, King George Medical University, and Lucknow in terms of providing multidrug-resistant clinical isolates of E. coli is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arvind Singh Negi or Mahendra P. Darokar.

Ethics declarations

Funding

This study received financial support from Council of Scientific and Industrial Research under major laboratory project (MLP-02) and CSIR Network projects BSC 0121/BSC0203.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, G.R., Tiwari, N., Singh, A. et al. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli . Appl Microbiol Biotechnol 100, 2311–2325 (2016). https://doi.org/10.1007/s00253-015-7152-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7152-6

Keywords

Navigation