Skip to main content

Evaluation of Efflux Activity of Bacteria by a Semi-automated Fluorometric System

  • Protocol
  • First Online:
Antibiotic Resistance Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 642))

Abstract

A semi-automated method that uses the common efflux pump (EP) substrate ethidium bromide (EB) is described for the assessment of EP systems of bacteria. The method employs the Rotor-GeneTM 3000 thermocycler (Corbett Research) for the real-time assessment of accumulation and efflux of EB in Phosphate-Buffered Solution (PBS) under varying physiological conditions, such as temperature, pH, presence and absence of the energy source, and presence of efflux pumps inhibitors (EPIs). The method is sufficiently sensitive to characterize intrinsic EP systems of reference strains, a prime necessity if there is a need for assessment of EP-mediated multi-drug resistance (MDR). The method has been successfully applied by us to characterize intrinsic and over-expressed EP systems of Escherichia coli, Salmonella Enteritidis, Enterobacter aerogenes, Enterococcus faecalis and Enterococcus faecium, Staphylococcus aureus, and Mycobacterium smegmatis and Mycobacterium avium, suggesting that if the organism can be maintained in PBS, the system described may suffice for the evaluation and assessment of its EP system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176

    Article  CAS  PubMed  Google Scholar 

  2. Levy SB, McMurry L (1978) Plasmid-determined tetracycline resistance involves new transport systems for tetracycline. Nature 276:90–92

    Article  CAS  PubMed  Google Scholar 

  3. McMurry L, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 77:3974–3977

    Article  CAS  PubMed  Google Scholar 

  4. Ball PR, Shales SW, Chopra I (1980) Plasmid-mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biochem Biophys Res Commun 93:74–81

    Article  CAS  PubMed  Google Scholar 

  5. Nikaido H (1988) Bacterial resistance to antibiotics as a function of outer membrane permeability. J Antimicrob Chemother 22:17–22

    CAS  PubMed  Google Scholar 

  6. Gootz TD (2006) The forgotten Gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance. Biochem Pharmacol 71:1073–1084

    Article  CAS  PubMed  Google Scholar 

  7. Poole K (2003) Overcoming multidrug resistance in gram-negative bacteria. Curr Opin Investig Drugs 4:128–139

    CAS  PubMed  Google Scholar 

  8. Giuliodori AM, Gualerzi CO, Soto S, Vila J, Tavío MM (2007) Review on bacterial stress topics. Ann NY Acad Sci 1113:95–104

    Article  CAS  PubMed  Google Scholar 

  9. Martins M, Dastidar SG, Fanning S, Kristiansen JE, Molnar J, Pagès JM et al (2008) Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities. Int J Antimicrob Agents 31:198–208

    Article  CAS  PubMed  Google Scholar 

  10. Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402

    Article  CAS  PubMed  Google Scholar 

  11. Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71:910–918

    Article  CAS  PubMed  Google Scholar 

  12. Viveiros M, Dupont M, Rodrigues L, Couto I, Davin-Regli A, Martins M et al (2007) Antibiotic stress, genetic response and altered permeability of E. coli. PLoS One 2:e365

    Article  PubMed  Google Scholar 

  13. Baquero F (2001) Low-level antibacterial resistance: a gateway to clinical resistance. Drug Resist Updat 4:93–105

    Article  CAS  PubMed  Google Scholar 

  14. Martinez JL, Baquero F, Andersson DI (2007) Predicting antibiotic resistance. Nat Rev Microbiol 5:958–965

    Article  CAS  PubMed  Google Scholar 

  15. Lomovskaya O, Zgurskaya HI, Totrov M, Watkins WJ (2007) Waltzing transporters and “the dance macabre” between humans and bacteria. Nat Rev Drug Discov 6:56–65

    Article  CAS  PubMed  Google Scholar 

  16. Piddock LJ (2006) Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636

    Article  CAS  PubMed  Google Scholar 

  17. Viveiros M, Martins A, Paixão L, Rodrigues L, Martins M, Couto I et al (2008) Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int J Antimicrob Agents 31:458–462

    Article  CAS  PubMed  Google Scholar 

  18. Rodrigues L, Wagner D, Viveiros M, Sampaio D, Couto I, Vavra M et al (2008) Thioridazine and chlorpromazine inhibition of ethidium bromide efflux in Mycobacterium avium and Mycobacterium smegmatis. J Antimicrob Chemother 61:1076–1082

    Article  CAS  PubMed  Google Scholar 

  19. Couto I, Costa SS, Viveiros M, Martins M, Amaral L (2008) Efflux-mediated response of Staphylococcus aureus exposed to ethidium bromide. J Antimicrob Chemother 62:04–513

    Article  CAS  PubMed  Google Scholar 

  20. Greulich KO (2004) Single molecule techniques for biomedicine and pharmacology. Curr Pharm Biotechnol 5:243–259

    Article  CAS  PubMed  Google Scholar 

  21. Mortimer PG, Piddock LJ (1991) A comparison of methods used for measuring the accumulation of quinolones by Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother 28:639–653

    Article  CAS  PubMed  Google Scholar 

  22. Hendrikse NH (2000) Monitoring interactions at ATP-dependent drug efflux pumps. Curr Pharm Des 6:1653–1668

    Article  CAS  PubMed  Google Scholar 

  23. Schumacher A, Trittler R, Bohnert JA, Kummerer K, Pagès JM, Kern WV (2007) Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother 59:1261–1264

    Article  CAS  PubMed  Google Scholar 

  24. Shapiro HM (2008) Flow cytometry of bacterial membrane potential and permeability. Methods Mol Med 142:175–186

    Article  CAS  PubMed  Google Scholar 

  25. Aszalos A (2007) Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) I. Preclinical aspects. Drug Discov Today 12:833–837

    Article  CAS  PubMed  Google Scholar 

  26. Kyriacou SV, Nowak ME, Brownlow WJ, Xu XHN (2002) Single live cell imaging for real-time monitoring of resistance mechanism in Pseudomonas aeruginosa. J Biomed Opt 7:576–586

    Article  CAS  PubMed  Google Scholar 

  27. Ryan BM, Dougherty TJ, Beaulieu D, Chuang J, Dougherty BA, Barrett JF (2001) Efflux in bacteria: what do we really know about it? Expert Opin investig Drugs 10:1409–1422

    Article  Google Scholar 

  28. Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect 2:1523–1535

    Article  CAS  PubMed  Google Scholar 

  29. Jernaes MW, Steen HB (1994) Staining of Escherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry 17:302–309

    Article  CAS  PubMed  Google Scholar 

  30. Duffy L, Dykes GA (2006) Growth temperature of four Campylobacter jejuni strains influences their subsequent survival in food and water. Lett Appl Microbiol 43:596–601

    Article  CAS  PubMed  Google Scholar 

  31. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, USA

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants EU-FSE/FEDER-POCI /SAU-MMO/59370/2004 and EU-FSE/FEDER-PTDC/BIA-MIC/71280/2006 provided by the Fundação para a Ciência e a Tecnologia (FCT) of Portugal. M. Martins, A. Martins, L. Rodrigues, and G. Spengler were supported by grants SFRH/BD/14319/2003, SFRH/BD/19445/2004, SFRH/BD/24931/2005, and SFRH/BPD/34578/2007 from the FCT of Portugal, respectively. The authors wish to thank Séamus Fanning, Winfried V. Kern, and Jean-Marie Pagès for the MDR strains they have provided for evaluation of efflux activity, as well as for the many discussions that stimulated aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Amaral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Viveiros, M. et al. (2010). Evaluation of Efflux Activity of Bacteria by a Semi-automated Fluorometric System. In: Gillespie, S., McHugh, T. (eds) Antibiotic Resistance Protocols. Methods in Molecular Biology, vol 642. Humana Press. https://doi.org/10.1007/978-1-60327-279-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-279-7_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-278-0

  • Online ISBN: 978-1-60327-279-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics