Skip to main content
Log in

Enhanced l-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated cell physiological and metabolic responses of Lactobacillus paracasei to osmotic stresses. Both cellular fatty acid composition and metabolite profiling were responded by increasing unsaturated and epoxy-fatty acid proportions, as well as accumulating some specific intracellular metabolites. Simultaneously, metabolite profiling was adopted to rationally and systematically discover potential osmoprotectants. Consequently, exogenous addition of proline or aspartate was validated to be a feasible and efficacious approach to improve cell growth under hyperosmotic stress in shake flasks. Particularly, with 5-L cultivation system, l-lactic acid concentration increased from 108 to 150 g/L during the following 16-h fermentation in 2 g/L proline addition group, while it only increased from 110 to 140 g/L in no proline addition group. Moreover, glucose consumption rate with proline addition reached 3.49 g/L/h during this phase, 35.8 % higher than that with no proline addition. However, extreme high osmotic pressure would significantly limit the osmoprotection of proline, and the osmolality threshold for L. paracasei was approximately 3600 mOsm/kg. It was suggested that proline principally played a role as a compatible solute accumulated in the cell for hyperosmotic preservation. The strategies of exploiting osmotic protectant with metabolite profiling and enhancing l-lactic acid production by osmoprotectant addition would be potential to provide a new insight for other microorganisms and organic acids production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antolín EM, Delange DM, Canavaciolo VG (2008) Evaluation of five methods for derivatization and GC determination of a mixture of very long chain fatty acids (C24:0-C36:0). J Pharm Biomed Anal 46:194–199

    Article  PubMed  Google Scholar 

  • Baliarda A, Robert H, Jebbar M, Blanco C, Deschamps A, Le Marrec C (2003) Potential osmoprotectants for the lactic acid bacteria Pediococcus pentosaceus and Tetragenococcus halophila. Int J Food Microbiol 84:13–20

    Article  CAS  PubMed  Google Scholar 

  • Bruno Z, Srdan G, Vuorilehto K, Durda VR, Ralf T (2004) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng 85:638–646

    Article  Google Scholar 

  • Conde A, Silva P, Agasse A, Conde C, Geró S (2011) Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses. Plant Cell Physiol 52:1766–1775

    Article  CAS  PubMed  Google Scholar 

  • Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  • Ding S, Tan T (2006) L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem 41:1451–1454

    Article  CAS  Google Scholar 

  • Fang X, Li J, Zheng X, Xi Y, Chen K, Wei P, Ouyang P, Jiang M (2011) Influence of osmotic stress on fermentative production of succinic acid by Actinobacillus succinogenes. Appl Biochem Biotechnol 165:138–147

    Article  CAS  PubMed  Google Scholar 

  • Fulko AJ (1983) Fatty acid metabolism in bacteria. Prog Lipid Res 22:133–160

    Article  Google Scholar 

  • Guerzoni ME, Lanciott R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiol 147:2255–2264

    Article  CAS  Google Scholar 

  • Ge X, Yuan J, Qin H, Zhang W (2011) Improvement of L-lactic acid production by osmotic tolerant mutant of Lactobacillus casei at high temperature. Appl Microbiol Biotechnol 89:73–78

    Article  CAS  PubMed  Google Scholar 

  • Grothe S, Krogsrud R, McClellan DJ, Milner J, Wood JM (1986) Proline transport and osmotic stress response in Escherichia coli K-12. J Bacteriol 166:253–259

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycinebetaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann T, von Blohn C, Stanek A, Moses S, Barzantny H, Bremer E (2012) Synthesis, release, and recapture of compatible solute proline by osmotically stressed Bacillus subtilis cells. Appl Environ Microbiol 16:753–5762

    Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izawa S, Sato M, Yokoigawa K, Inoue Y (2004) Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Appl Microbiol Biotechnol 66:108–114

    Article  CAS  PubMed  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  CAS  PubMed  Google Scholar 

  • Liu HJ, Liu DH, Zhong JJ (2006) Quantitative response of trehalose and glycerol syntheses by Candida krusei to osmotic stress of the medium. Process Biochem 41:473–476

    Article  CAS  Google Scholar 

  • Liu L, Xu Q, Li Y, Shi Z, Zhu Y, Du G, Chen J (2007) Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata. Biotechnol Bioeng 4:825–832

    Article  Google Scholar 

  • Molenaar D, Hagting A, Alkema H, Driessen AJ, Konings WN (1993) Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J Bacteriol 175:5438–5444

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2002) Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J Biosci Bioeng 94:390–394

    Article  CAS  PubMed  Google Scholar 

  • Obis D, Guillot A, Gripon JC, Renault P, Bolotin A, Mistou MY (1999) Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol 181:6238–6246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Purvis JE, Yomano LP, Ingram LO (2005) Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol 7:3761–3769

    Article  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86:709–716

    Article  CAS  Google Scholar 

  • Robert H, Le Marrec C, Blanco C, Jebbar M (2000) Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. Appl Environ Microbiol 66:509–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rudolph AS, Crowe JH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367–377

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ, Fukanaga M (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182

    Article  CAS  Google Scholar 

  • Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sánchez-Fresned R, Guirao-Abad JP, Argüelle A, González-Párraga P, Valen-tín E, Argüelles JC (2013) Specific stress-induced storage of trehalose, glycerol and d-arabitol in response to oxidative and osmotic stress in Candida albicans. Biochem Biophys Res Commun 430:1334–1339

    Article  Google Scholar 

  • Suutari M, Laakso S (1994) Microbial fatty acid and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Sakai K, Morida K, Nakamori S (2000) Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett 184:103–108

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Wang Y, Chu J, Zhuang Y, Zhang S (2014a) Oxygen transfer efficiency and environmental osmolarity response to neutralizing agents on L-lactic acid production efficiency by Lactobacillus paracasei. Process Biochem 49:2049–2054

    Article  CAS  Google Scholar 

  • Tian X, Wang Y, Chu J, Zhuang Y, Zhang S (2014b) L-lactic acid production benefits from reduction of environmental osmotic stress through neutralizing agent combination. Bioprocess Biosyst Eng 37:1917–1923

    Article  CAS  PubMed  Google Scholar 

  • Tsakalidou E, Papadimitriou K (2011) Stress responses of lactic acid bacteria. In: Le Marrec C (ed) Responses of lactic acid bacteria to osmotic stress. Springer, New York, pp 67–90

    Chapter  Google Scholar 

  • Tymczyszyn EE, Gómez-Zavaglia A, Disalvo EA (2005) Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus. Arch Biochem Biophys 443:66–73

    Article  CAS  PubMed  Google Scholar 

  • Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216

    Article  PubMed  Google Scholar 

  • Vázquez-Ortíz FA, Moron-Fuenmayor OE, Gonzalez-Mendez NF (2004) Hydroxyproline measurement by HPLC: improved method of total collagen determination in meat samples. J Liq Chromatogr Relat Technol 27:2771–2780

    Article  Google Scholar 

  • Wee Y, Kim J, Ryu H (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  • Xu S, Zhou JW, Liu LM, Chen J (2010) Proline enhances Torulopsis glabrata growth during hyperosmotic stress. Biotechnol Bioprocess Eng 15:285–292

    Article  CAS  Google Scholar 

  • Zhou X, Ye L, Wu J (2013) Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Appl Microbiol Biotechnol 97:4309–4314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Key Basic Research Program of China (973 Program, 2013CB733600) and the National Major Scientific and Technological Special Project for “Significant Scientific Instrument and Equipment Development” (2012YQ15008709).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghong Wang or Ju Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Wang, Y., Chu, J. et al. Enhanced l-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis. Appl Microbiol Biotechnol 100, 2301–2310 (2016). https://doi.org/10.1007/s00253-015-7136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7136-6

Keywords

Navigation