Skip to main content

Advertisement

Log in

Lichens as natural sources of biotechnologically relevant bacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The search for microorganisms from novel sources and in particular microbial symbioses represents a promising approach in biotechnology. In this context, lichens have increasingly become a subject of research in microbial biotechnology, particularly after the recognition that a diverse community of bacteria other than cyanobacteria is an additional partner to the traditionally recognized algae-fungus mutualism. Here, we review recent studies using culture-dependent as well as culture-independent approaches showing that lichens can harbor diverse bacterial families known for the production of compounds of biotechnological interest and that several microorganisms isolated from lichens, in particular Actinobacteria and Cyanobacteria, can produce a number of bioactive compounds, many of them with biotechnological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • An S-Y, Xiao T, Yokota A (2008) Schumannella luteola gen. nov., sp nov., a novel genus of the family Microbacteriaceae. J Gen Appl Microbiol 54:253–258. doi:10.2323/jgam.54.253

    Article  PubMed  CAS  Google Scholar 

  • An S-Y, Xiao T, Yokota A (2009) Leifsonia lichenia sp nov., isolated from lichen in Japan. J Gen Appl Microbiol 55:339–343

    Article  PubMed  CAS  Google Scholar 

  • Ando T, Hirayama K, Takahashi R, Horino I, Etoh Y, Morioka H, Shibai H, Murai A (1985) The structures of anthracycline antibiotics, cosmomycins A and B. Agr Biol Chem Tokyo 49:1207–1209. doi:10.1271/bbb1961.49.1207

    Article  CAS  Google Scholar 

  • Antal N, Fiedler HP, Stackebrandt E, Beil W, Stroch K, Zeeck A (2005) Retymicin, galtamycin B, saquayamycin Z and ribofuranosyllumichrome, novel secondary metabolites from Micromonospora sp Tu 6368 - I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 58:95–102

    Article  PubMed  CAS  Google Scholar 

  • Aschenbrenner IA, Cardinale M, Berg G, Grube M (2014) Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens? Environ Microbiol 16:3743–3752. doi:10.1111/1462-2920.12658

    Article  PubMed  CAS  Google Scholar 

  • Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microb 77:1309–1314. doi:10.1128/aem.02257-10

    Article  CAS  Google Scholar 

  • Bjelland T, Grube M, Hoem S, Jorgensen SL, Daae FL, Thorseth IH, Ovreas L (2011) Microbial metacommunities in the lichen-rock habitat. Environ Microbiol Rep 3:434–442. doi:10.1111/j.1758-2229.2010.00206.x

    Article  PubMed  Google Scholar 

  • Boustie J, Grube M (2005) Lichens, a promising source of bioactive secondary metabolites. Plant Gent Resour 3:273–287

    Article  CAS  Google Scholar 

  • Brady SF, Simmons L, Kim JH, Schmidt EW (2009) Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat Prod Rep 26:1488–1503. doi:10.1039/b817078a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brana AF, Fiedler H-P, Nava H, Gonzalez V, Sarmiento-Vizcaino A, Molina A, Acuna JL, Garcia LA, Blanco G (2015) Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian sea. Microb Ecol 69:512–524. doi:10.1007/s00248-014-0508-0

    Article  PubMed  CAS  Google Scholar 

  • Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495. doi:10.1111/j.1574-6941.2006.00133.x

    Article  PubMed  CAS  Google Scholar 

  • Cardinale M, de Castro JV Jr, Mueller H, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66:63–1. doi:10.1111/j.1574-6941.2008.00546.x

    Article  PubMed  CAS  Google Scholar 

  • Cardinale M, Grube M, Berg G (2011) Frondihabitans cladoniiphilus sp nov., an actinobacterium of the family Microbacteriaceae isolated from lichen, and emended description of the genus Frondihabitans. Int J Syst Evol Micr 61:3033–3038. doi:10.1099/ijs.0.028324-0

    Article  CAS  Google Scholar 

  • Cardinale M, Grube M, Castro JV Jr, Mueller H, Berg G (2012a) Bacterial taxa associated with the lung lichen Lobaria pulmonaria are differentially shaped by geography and habitat. FEMS Microbiol Lett 329:111–115. doi:10.1111/j.1574-6968.2012.02508.x

  • Cardinale M, Steinova J, Rabensteiner J, Berg G, Grube M (2012b) Age, sun and substrate: triggers of bacterial communities in lichens. Environ Microbiol Rep 4:23–28. doi:10.1111/j.1758-2229.2011.00272.x

    Article  PubMed  Google Scholar 

  • Cernava T, Aschenbrenner IA, Grube M, Liebminger S, Berg G (2015a) A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria Front Microbiol 6 doi:10.3389/fmicb.2015.00398

  • Cernava T, Mueller H, Aschenbrenner IA, Grube M, Berg G (2015b) Analyzing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Front Microbiol 6 doi:10.3389/fmicb.2015.00620

  • Chang F-Y, Brady SF (2013) Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. Proc Natl Acad Sci U S A 110:2478–2483. doi:10.1073/pnas.1218073110

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies J, Wang H, Taylor T, Warabi K, Huang XH, Andersen RJ (2005) Uncialamycin, a new enediyne antibiotic. Org Lett 7:5233–5236. doi:10.1021/ol052081f

    Article  PubMed  CAS  Google Scholar 

  • De Bary A (1879) Die erscheinung der symbiose. Verlag von Karl J, Trübner

    Google Scholar 

  • Dittmann E, Fewer DP, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37:23–43. doi:10.1111/j.1574-6976.2012.12000.x

    Article  PubMed  CAS  Google Scholar 

  • Dworkin M (2001) Myxobacteria. In: eLS. John Wiley & Sons, Ltd. doi:10.1002/9780470015902.a0020391

  • Edelman MJ, Gandara DR, Hausner P, Israel V, Thornton D, DeSanto J, Doyle LA (2003) Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer 39:197–199. doi:10.1016/s0169-5002(02)00511-1

    Article  PubMed  Google Scholar 

  • Elix JA (2014) A Catalogue of Standardized Chromatographic Data and Biosynthetic Relationships for Lichen Substances. Third Edition, 3rd edn. Published by the author, Camberra

  • Esposito A, Ciccazzo S, Borruso L, Zerbe S, Daffonchio D, Brusetti L (2013) A three-scale analysis of bacterial communities involved in rocks colonization and soil formation in high mountain environments. Curr Microbiol 67:472–479. doi:10.1007/s00284-013-0391-9

    Article  PubMed  CAS  Google Scholar 

  • Frank A (1876) Ueber die biologischen Verhältnisse des Thallus einiger Krustenflechten. In: Cohn F (ed) Beiträge zur Biologie der Pflanzen., vol 2, vol 2, vol. JU Kern, Breslay, pp 123–200

    Google Scholar 

  • Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl H-G, Matsunaga S, Piel J (2012) Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338:387–390. doi:10.1126/science.1226121

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA (2014) Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biot 98:7331–7347. doi:10.1007/s00253-014-5861-x

    Article  CAS  Google Scholar 

  • Gasser I, Vieira de Castro Junior J, Müller H, Berg G (2011) Lichen-associated bacteria antagonistic to phytopathogens and their potential to accumulate polyhydroxyalkanoates, in Pertot, I., Elad Y, Gessler, C and A. Cini (eds) Working Group "Biological Control of Fungal and Bacterial Plant Pathogens" IOBC WPRS BULLETIN V78 ISBN 978-92-9067-256-2 pp 375–379

  • Golakoti T, Yoshida WY, Chaganty S, Moore RE (2001) Isolation and structure determination of nostocyclopeptides A1 and A2 from the terrestrial cyanobacterium Nostoc sp ATCC53789. J Nat Prod 64:54–59. doi:10.1021/np000316k

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: Evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415. doi:10.1016/j.femsec.2005.05.004

    Article  PubMed  CAS  Google Scholar 

  • Grube M, Blaha J (2003) On the phylogeny of some polyketide synthase genes in the lichenized genus Lecanora. Mycol Res 107:1419–1426. doi:10.1017/s0953756203008724

    Article  PubMed  CAS  Google Scholar 

  • Grube M, Cardinale M, de Castro JV Jr, Mueller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115. doi:10.1038/ismej.2009.63

    Article  PubMed  Google Scholar 

  • Grube M, Koeberl M, Lackner S, Berg C, Berg G (2012) Host-parasite interaction and microbiome response: effects of fungal infections on the bacterial community of the Alpine lichen Solorina crocea. FEMS Microbiol Ecol 82:472–481. doi:10.1111/j.1574-6941.2012.01425.x

    Article  PubMed  CAS  Google Scholar 

  • Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME Journal 9:412–424. doi:10.1038/ismej.2014.138

    Article  PubMed  CAS  Google Scholar 

  • Hamada M, Yamamura H, Komukai C, Tamura T, K-i S, Hayakawa M (2012) Luteimicrobium album sp nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot 65:427–431. doi:10.1038/ja.2012.45

    Article  PubMed  CAS  Google Scholar 

  • Hirsch CF, Liesch JM, Salvatore MJ, Schwartz RE, Sesin DF (1990) Antifungal fermentation product and method. USA Patent 4946835

  • Hodkinson BP, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180. doi:10.1007/s13199-009-0049-3

    Article  CAS  Google Scholar 

  • Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 14:147–161. doi:10.1111/j.1462-2920.2011.02560.x

    Article  PubMed  CAS  Google Scholar 

  • Honegger R (2000) Great discoveries in bryology and lichenology—Simon Schwendener (1829–1919) and the dual hypothesis of lichens. Bryologist 103:307–313. doi:10.1639/0007-2745(2000)103[0307:SSATDH]2.0.CO;2

    Article  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances, 1st edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Jakobi M, Winkelmann G, Kaiser D, Kempter C, Jung G, Berg G, Bahl H (1996) Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 49:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J (2013) Lichen species identity and diversity of cyanobacterial toxins in symbiosis. New Phytol 198:647–651. doi:10.1111/nph.12215

    Article  PubMed  Google Scholar 

  • Kampa A, Gagunashvili AN, Gulder TAM, Morinaka BI, Daolio C, Godejohann M, Miao VPW, Piel J, Andresson OS (2013) Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc Natl Acad Sci U S A 110:E3129–E3137. doi:10.1073/pnas.1305867110

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M-K, Park H, Oh T-J (2013) Antimicrobial properties of the bacterial associates of the Arctic lichen Stereocaulon sp. Afr J Microbiol Res 7:3651–3657

    Google Scholar 

  • Kim MK, Park H, Oh TJ (2014) Antibacterial and antioxidant capacity of polar microorganisms isolated from Arctic lichen Ochrolechia sp. Pol J Microbiol 63:317–322

    Article  PubMed  Google Scholar 

  • Lang E, Swiderski J, Stackebrandt E, Schumann P, Sproeer C, Sahin N (2007) Herminiimonas saxobsidens sp nov., isolated from a lichen-colonized rock. Int J Syst Evol Micr 57:2618–2622. doi:10.1099/ijs.0.65163-0

    Article  CAS  Google Scholar 

  • Lavallee V (2011) Antipain and its analogues, natural product inhibitors of cathepsin K isolated from Streptomyces. MSc., The University of British Columbia

  • Lee H, Shin SC, Lee J, Kim SJ, Kim B-K, Hong SG, Kim EH, Park H (2012a) Genome sequence of Sphingomonas sp strain PAMC 26621, an Arctic-lichen-associated bacterium isolated from a Cetraria sp. J Bacteriol 194:3030–3030. doi:10.1128/jb.00395-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Shin SC, Kim SJ, Kim B-K, Hong SG, Kim EH, Park H, Lee H (2012b) Draft genome sequence of a Sphingomonas sp., an endosymbiotic bacterium isolated from an Arctic lichen Umbilicaria sp. J Bacteriol 194:3010–3011. doi:10.1128/jb.00360-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee D-H, Hur JS, Kahng H-Y (2013) Sphingobacterium cladoniae sp nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense. Int J Syst Evol Micr 63:755–760. doi:10.1099/ijs.0.038844-0

  • Lee YM, Kim EH, Lee HK, Hong SG (2014) Biodiversity and physiological characteristics of Antarctic and Arctic lichens-associated bacteria. World J Microb Biot 30:2711–2721. doi:10.1007/s11274-014-1695-z

    Article  CAS  Google Scholar 

  • Li B, Xie C-H, Yokota A (2007) Nocardioides exalbidus sp. nov., a novel actinomycete isolated from lichen in Izu-Oshima Island, Japan. Actinomycetologica 21:22–26. doi:10.3209/saj.SAJ210103

    Article  Google Scholar 

  • Liba CM, Ferrara FIS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086. doi:10.1111/j.1365-2672.2006.03010.x

    Article  PubMed  CAS  Google Scholar 

  • Magarvey NA, Beck ZQ, Golakoti T, Ding Y, Huber U, Hemscheidt TK, Abelson D, Moore RE, Sherman DH (2006) Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from Nostoc cyanobionts. ACS Chem Biol 1:766–779. doi:10.1021/cb6004307

    Article  PubMed  CAS  Google Scholar 

  • Mannisto MK, Tiirola M, McConnell J, Haggblom MM (2010) Mucilaginibacter frigoritolerans sp nov., Mucilaginibacter lappiensis sp nov and Mucilaginibacter mallensis sp nov., isolated from soil and lichen samples. Int J Syst Evol Micr 60:2849–2856. doi:10.1099/ijs.0.019364-0

    Article  CAS  Google Scholar 

  • McCurdy HD (1971) Studies on the Taxonomy of the Myxobacterales: IV. Melittangium. Int J Syst Evol Micr 21:50–54 doi:doi:10.1099/00207713-21-1-50

  • Molnár K, Farkas E (2010) Current Results on Biological Activities of Lichen Secondary Metabolites: a Review. Z Naturforsch vol 65. doi:10.1515/znc-2010-3-401

  • Moore RE, Patterson GML (1997) Method for producing Cryptocins by cultivating a Nostoc sp. USA Patent 5:945,315

    Google Scholar 

  • Motohashi K, Takagi M, Yamamura H, Hayakawa M, Shin-ya K (2010) new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp. A J Antibiot 63:545–548. doi:10.1038/ja.2010.94

  • Muggia L, Grube M (2010) Type III polyketide synthases in lichen mycobionts. Fungal Biol 114:379–385. doi:10.1016/j.funbio.2010.03.001

    Article  PubMed  Google Scholar 

  • Muggia L, Klug B, Berg G, Grube M (2013) Localization of bacteria in lichens from Alpine soil crusts by fluorescence in situ hybridization. Appl Soil Ecol 68:20–25. doi:10.1016/j.apsoil.2013.03.008

    Article  Google Scholar 

  • Mushegian AA, Peterson CN, Baker CCM, Pringle A (2011) Bacterial diversity across individual lichens. Appl Environ Microb 77:4249–4252. doi:10.1128/aem.02850-10

    Article  CAS  Google Scholar 

  • Niedermeyer THJ, Daily A, Swiatecka-Hagenbruch M, Moscow JA (2014) Selectivity and Potency of Microcystin Congeners against OATP1B1 and OATP1B3 Expressing Cancer Cells Plos One 9 doi:10.1371/journal.pone.0091476

  • Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biot 97:87–98. doi:10.1007/s00253-012-4551-9

    Article  CAS  Google Scholar 

  • Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K (2004) Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp strain IO-102-I. Appl Environ Microb 70:5756–5763. doi:10.1128/aem.70.10.5756-5763.2004

    Article  CAS  Google Scholar 

  • Pankratov TA (2012) Acidobacteria in microbial communities of the bog and tundra lichens. Microbiology 81:51–58. doi:10.1134/S0026261711060166

    Article  CAS  Google Scholar 

  • Parrot D, Antony-Babu S, Intertaglia L, Grube M, Tomasi S, Suzuki M (2015) Littoral lichens as a novel source of potentially bioactive Actinobacteria. Sci Rep 5:15839. doi:10.1038/srep15839

  • Reichenbach H (1999) The ecology of the myxobacteria. Environ Microbiol 1:15–21. doi:10.1046/j.1462-2920.1999.00016.x

    Article  PubMed  CAS  Google Scholar 

  • Rikkinen J (1995) What’s behind the pretty colours?: a study on the photobiology of lichens. Finnish Bryological Society, ISBN: 951-96475-3-8

  • Robinson C (1999) The genetics of industrial microorganisms: the first half century. Trends Biotechnol 17:178–181

    Article  PubMed  CAS  Google Scholar 

  • Schendener S (1860) Untersuchunger über des Flechtentallus. In: Nägeli C (ed) Beiträge zur Wissenchaftlichen Botanik, vol 2, vol 2. Wilhelm Engelman, Leipizg, pp 109–186

    Google Scholar 

  • Schmitt I, Kautz S, Lumbsch HT (2008) 6-MSAS-like polyketide synthase genes occur in lichenized ascomycetes. Mycol Res 112:289–296. doi:10.1016/j.mycres.2007.08.023

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Schmid E, de Castro JV Jr, Cardinale M, Eberl L, Grube M, Berg G, Riedel K. (2011). Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics. 11:2752–6. d

  • Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M, Onofri S (2010) Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 33:71–83. doi:10.1007/s00300-009-0686-2

    Article  Google Scholar 

  • Shin SC, Ahn DH, Lee JK, Kim SJ, Hong SG, Kim EH, Park H (2012) Genome sequence of Sphingomonas sp strain PAMC 26605, isolated from Arctic lichen (Ochrolechia sp.). J Bacteriol 194:1607–1607. doi:10.1128/jb.00004-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrestha G, St Clair LL (2013) Lichens: a promising source of antibiotic and anticancer drugs. Phytochem Rev 12:229–244. doi:10.1007/s11101-013-9283-7

    Article  CAS  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314. doi:10.1007/s11101-010-9189-6

    Article  CAS  Google Scholar 

  • Sigurbjornsdottir MA, Heidmarsson S, Jonsdottir AR, Vilhelmsson O (2014) Novel bacteria associated with Arctic seashore lichens have potential roles in nutrient scavenging Can. J Microbiol 60:307–317. doi:10.1139/cjm-2013-0888

    Google Scholar 

  • Sigurbjornsdottir MA, Andresson OS, Vilhelmsson O (2015) Analysis of the Peltigera membranacea metagenome indicates that lichen-associated bacteria are involved in phosphate solubilization. Microbiology (SGM) 161:989–996. doi:10.1099/mic.0.000069

    Article  CAS  Google Scholar 

  • Singh SB, Garrity GM, Genillourd O, Lingham RB, Martin I, Nallin-Omstead M, Silverman KC, Zink DL (1997) Inhibitor compounds of farnesyl-protein transferase and chemotherapeutic compositions containing the same, produced by strain ATCC 55532. USA Patent 5:627,057

    Google Scholar 

  • Stocker-Woergoetter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–190. doi:10.1039/b606983p

    Article  CAS  Google Scholar 

  • Subramani R, Aalbersberg W (2013) Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biot 97:9291–9321. doi:10.1007/s00253-013-5229-7

    Article  CAS  Google Scholar 

  • Taylor TN, Hass H, Remy W, Kerp H (1995) The oldest fossil lichen. Nature 378:244–244. doi:10.1038/378244a0

    Article  CAS  Google Scholar 

  • Thaxter R (1892) On the Myxobacteriaceae, a new order of Schizomycetes. Bot Gaz 17:389–406. doi:10.2307/2464109

    Article  Google Scholar 

  • Uphof JCT (1925) Purple bacteria as symbionts of a lichen Science 61:67–67 doi:10.1126/science.61.1568.67

  • Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Dieras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K, Grp ES (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. New England Journal of Medicine 367:1783–1791. doi:10.1056/NEJMoa1209124

    Article  PubMed  CAS  Google Scholar 

  • Williams DE, Davies J, Patrick BO, Bottriell H, Tarling T, Roberge M, Andersen RJ (2008) Cladoniamides A-G, tryptophan-derived alkaloids produced in culture by Streptomyces uncialis. Org Lett 10:3501–3504. doi:10.1021/ol801274c

    Article  PubMed  CAS  Google Scholar 

  • Wilson MC, Mori T, Ruckert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmitt S, Rinke C, Helfrich EJN, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crusemann M, Hentschel U, Abe I, Matsunaga S, Kalinowski J, Takeyama H, Piel J (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58 − + doi:10.1038/nature12959

  • Woolhouse M, Farrar J (2014) Policy: an intergovernmental panel on antimicrobial resistance. Nature 509:555–557

    Article  PubMed  Google Scholar 

  • Yamamura H, Ashizawa H, Nakagawa Y, Hamada M, Ishida Y, Otoguro M, Tamura T, Hayakawa M (2011a) Actinomycetospora iriomotensis sp nov., a novel actinomycete isolated from a lichen sample. J Antibiot 64:289–292. doi:10.1038/ja.2011.15

    Article  PubMed  CAS  Google Scholar 

  • Yamamura H, Ashizawa H, Nakagawa Y, Hamada M, Ishida Y, Otoguro M, Tamura T, Hayakawa M (2011b) Actinomycetospora rishiriensis sp nov., isolated from a lichen. Int J Syst Evol Micr 61:2621–2625. doi:10.1099/ijs.0.028753-0

    Article  CAS  Google Scholar 

  • Yang XM, Shimizu YZ, Steiner JR, Clardy J (1993) Nostoclide I and II, extracellular metabolites from a symbiotic cyanobacterium, Nostoc sp, from the lichen Peltigera canina. Tetrahedron Lett 34:761–764. doi:10.1016/0040-4039(93)89005-b

    Article  CAS  Google Scholar 

  • Yasuda Y, Kaleta J, Bromme D (2005) The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliver Rev 57:973–993. doi:10.1016/j.addr.2004.12.013

    Article  CAS  Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 362:1195–1200. doi:10.1098/rstb.2007.2044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon V, Nodwell JR (2014) Activating secondary metabolism with stress and chemicals. J Ind Microbiol Biotechnol 41:415–424. doi:10.1007/s10295-013-1387-y

    Article  PubMed  CAS  Google Scholar 

  • Zachow C, Müller H, Tilcher R, Donat C, Berg G (2013) Catch the best: novel screening strategy to select stress protecting agents for crop plants. Agronomy 3:794–815

    Article  CAS  Google Scholar 

  • Zhang LP, Wang HY, Fang XM, Stackebrandt E, Ding YB (2003) Improved methods of isolation and purification of myxobacteria and development of fruiting body formation of two strains. J Microbiol Meth 54:21–27. doi:10.1016/s0167-7012(02)00257-9

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by EMR, a partnership between the UPMC, the Laboratoires Pierre Fabre and CNRS and by the project MALICA (10-INBS-02-01) of the Agence Nationale de la Recherche, France, as well as by the Fonds zur Förderung der wissenschaftlichen Forschung (FWF I882), and the Wissenschaftlich-Technische Zusammenarbeit, Austria. We thank Sanjay Antony-Babu, Nyree West, Laurent Intertaglia for fruitful discussions and Scott T. Bates for sending OTU tables from his previous publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelino T. Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, M.T., Parrot, D., Berg, G. et al. Lichens as natural sources of biotechnologically relevant bacteria. Appl Microbiol Biotechnol 100, 583–595 (2016). https://doi.org/10.1007/s00253-015-7114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7114-z

Keywords

Navigation