Skip to main content

Advertisement

Log in

Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The opportunistic human pathogen Aspergillus fumigatus produces numerous different natural products. The genetic basis for the biosynthesis of a number of known metabolites has remained unknown. The gene cluster encoding for the biosynthesis of the conidia-bound metabolite trypacidin is of particular interest because of its antiprotozoal activity and possible role in the infection process. Here, we show that the genes encoding the biosynthesis enzymes of trypacidin reside within an orphan gene cluster in A. fumigatus. Genome mining identified tynC as an uncharacterized polyketide synthase with high similarity to known enzymes, whose products are structurally related to trypacidin including endocrocin and fumicycline. Gene deletion of tynC resulted in the complete absence of trypacidin production, which was fully restored when the mutant strain was complemented with the wild-type gene. When confronted with macrophages, the tynC deletion mutant conidia were more frequently phagocytosed than those of the parental wild-type strain. This was also found for phagocytic amoebae of the species Dictyostelium discoideum, which showed increased phagocytosis of ΔtynC conidia. Both macrophages and amoebae were also sensitive to trypacidin. Therefore, our results suggest that the conidium-bound trypacidin could have a protective function against phagocytes both in the environment and during the infection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latgé JP (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460(7259):1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Balan J, Ebringer L, Nemec P (1964) Trypacidin a new antiprotozoal antibiotic. Naturwissenschaften 51(9):227

    Article  Google Scholar 

  • Balan J, Ebringer L, Nemec P, Kovac S, Dobias J (1963) Antiprotozoal antibiotics. II. Isolation and characterization of trypacidin, a new antibiotic, active against Trypanosoma cruzi and Toxoplasma gondii. J Antibiot (Tokyo) 6:157–160

    Google Scholar 

  • Baldin C, Valiante V, Krüger T, Schafferer L, Haas H, Kniemeyer O, Brakhage AA (2015) Comparative proteomics of a tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation. Proteomics 15(13):2230–2243

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Langfelder K (2002) Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol 56:433–455

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA (2005) Systemic fungal infections caused by Aspergillus species: epidemiology, infection process and virulence determinants. Curr Drug Targets 6(8):875–886

    Article  CAS  PubMed  Google Scholar 

  • Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3(4):213–217

    Article  CAS  PubMed  Google Scholar 

  • Berthier E, Lim FY, Deng Q, Guo CJ, Kontoyiannis DP, Wang CC, Rindy J, Beebe DJ, Huttenlocher A, Keller NP (2013) Low-volume toolbox for the discovery of immunosuppressive fungal secondary metabolites. PLoS Pathog 9(4): e1003289

  • Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR (2013) The Aspergillus genome database (AspGD): multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucl Acids Res 42(Database issue):D705–D710

    PubMed Central  PubMed  Google Scholar 

  • Chai LY, Vonk AG, Kullberg BJ, Verweij PE, Verschueren I, van der Meer JW, Joosten LA, Latgé JP, Netea MG (2011) Aspergillus fumigatus cell wall components differentially modulate host TLR2 and TLR4 responses. Microbes Infect 13(2):151–159

  • Chiang YM, Szewczyk E, Davidson AD, Entwistle R, Keller NP, Wang CC, Oakley BR (2010) Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl Environ Microbiol 76(7):2067–2074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chooi YH, Fang J, Liu H, Filler SG, Wang P, Tang Y (2013) Genome mining of a prenylated and immunosuppressive polyketide from pathogenic fungi. Org Lett 15(4):780–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coyle CM, Panaccione DG (2005) An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus. Appl Environ Microbiol 71(6):3112–3118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ebringer L, Catar G, Balan J, Nemec P, Kov’ac S (1963) Antiprotozoal antibiotics. III Preliminary Report on the Effect of Trypacidin on Experimental Toxoplasmosis J Antibiot (Tokyo) 16:161–162

    CAS  Google Scholar 

  • Ebringer L, Balan J, Nemec P (1964) Incidence of antiprotozoal substances in Aspergillaceae. J Protozool 11(2):153–156

    Article  CAS  PubMed  Google Scholar 

  • Fischer G, Müller T, Ostrowski R, Dott W (1999) Mycotoxins of Aspergillus fumigatus in pure culture and in native bioaerosols from compost facilities. Chemosphere 38(8):1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Rank C, Nielsen KF, Larsen TO (2009) Metabolomics of Aspergillus fumigatus. Med Mycol 47(Suppl 1):S72–S79

    Google Scholar 

  • Gauthier T, Wang X, Sifuentes Dos Santos J, Fysikopoulos A, Tadrist S, Canlet C, Artigot MP, Loiseau N, Oswald IP, Puel O (2012) Trypacidin, a spore-borne toxin from Aspergillus fumigatus, is cytotoxic to lung cells. PLoS One 7(2):e29906

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison III CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  • Guo CJ, Wang CC (2014) Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Front Microbiol 23(717):1–13

    Google Scholar 

  • Heinekamp T, Schmidt H, Lapp K, Pähtz V, Shopova I, Köster-Eiserfunke N, Krüger T, Kniemeyer O, Brakhage AA (2015) Interference of Aspergillus fumigatus with the immune response. Semin Immunpathol 37(2):141–152

    Article  CAS  Google Scholar 

  • Hillmann F, Novohradská S, Mattern DJ, Forberger T, Heinekamp T, Westermann M, Winckler T, Brakhage AA (2015) Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol doi:. doi:10.1111/1462-2920.12808

    Google Scholar 

  • Ibrahim-Granet O, Philippe B, Boleti H, Boisvieux-Ulrich E, Grenet D, Stern M, Latgé JP (2003) Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun 71(2):891–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jahn B, Koch A, Schmidt A, Wanner G, Gehringer H, Bhakdi S, Brakhage AA (1997) Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun 65(12):5110–5117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kraibooj K, Park HR, Dahse HM, Skerka C, Voigt K, Figge MT (2014) Virulent strain of Lichtheimia corymbifera shows increased phagocytosis by macrophages as revealed by automated microscopy image analysis. Mycoses Suppl 3:56–66

    Article  Google Scholar 

  • König CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, Hertweck C (2013) Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. Chembiochem 14(8):938–942

    Article  PubMed  Google Scholar 

  • Kurup VP (1984) Interaction of Aspergillus fumigatus spores and pulmonary alveolar macrophages of rabbits. Immunobiology 166(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Lim FY, Hou Y, Chen Y, Oh JH, Lee I, Bugni TS, Keller NP (2012) Genome based cluster deletion reveals an endocrocin biosynthetic pathway in Aspergillus fumigatus. Appl Environ Microbiol 78(12):4117–4125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luther K, Torosantucci A, Brakhage AA, Heesemann J, Ebel F (2007) Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 β-glucan receptor and toll-like receptor 2. Cell Microbiol 9(2):368–381

    Article  CAS  PubMed  Google Scholar 

  • Maerker C, Rohde M, Brakhage AA, Brock M (2005) Methylcitrate synthase from Aspergillus fumigatus. Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia. FEBS J 272(14):3615–3630

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucl Acids Res 30(1):281–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mech F, Thywissen A, Guthke R, Brakhage AA, Figge MT (2011) Automated image analysis of the host-pathogen interaction between phagocytes and Aspergillus fumigatus. PLoS One 6(5):e19591

  • Mech F, Wilson D, Lehnert T, Hube B, Figge MT (2014) Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach. Cytometry A 85(2):126–139

    Article  PubMed  Google Scholar 

  • Meier A, Kirschning CJ, Nikolaus T, Wagner H, Heesemann J, Ebel F (2003) Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol 5(8):561–570

    Article  CAS  PubMed  Google Scholar 

  • Nemec P, Balan J, Ebringer L (1963) Antiprotozoal antibiotics. I J Antibiot (Tokyo) 16:155–156

    CAS  Google Scholar 

  • Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-Janssen TJ, Jacobs LE, Andresen T, Verweij PE, Kullberg BJ (2003) Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 188(2):320–326

    Article  CAS  PubMed  Google Scholar 

  • Nielsen ML, Nielsen JB, Rank C, Klejnstrup ML, Holm DK, Brogaard KH, Hansen BG, Frisvad JC, Larsen TO, Mortensen UH (2011) A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. F E M S Microbiol Lett 321(2):157–166

    Article  CAS  Google Scholar 

  • Nielsen MT, Nielsen JB, Anyaogu DC, Holm DK, Nielsen KF, Larsen TO, Mortensen UH (2013) Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. PLoS One 8(8):e72871

  • Parker GF, Jenner PC (1968) Distribution of trypacidin in cultures of Aspergillus fumigatus. Appl Microbiol 16(8):1251–1252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Philippe B, Ibrahim-Granet O, Prévost MC, Gougerot-Pocidalo MA, Sanchez Perez M, Van der Meeren A, Latgé JP (2003) Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun 71(6):3034–3042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C (2012) Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol 93(2):467–472

    Article  CAS  PubMed  Google Scholar 

  • Scharf DH, Heinekamp T, Brakhage AA (2014a) Human and plant fungal pathogens: the role of secondary metabolites. PLoS Pathog 10(1):e1003859

  • Scharf DH, Habel A, Heinekamp T, Brakhage AA, Hertweck C (2014b) Opposed effects of enzymatic gliotoxin N- and S-methylations. J Am Chem Soc 136(33):11674–11679

    Article  CAS  PubMed  Google Scholar 

  • Steele C, Rapaka RR, Metz A, Pop SM, Williams DL, Gordon S, Kolls JK, Brown GD (2005) The β-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 1(4):e42

  • Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, Osmani SA, Oakley BR (2006) Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1(6):3111–3120

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk E, Chiang YM, Oakley CE, Davidson AD, Wang CCC, Oakley BR (2008) Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Appl Environ Microbiol 74(24):7607–7612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tae H, Sohng JK, Park K (2009) MapsiDB: an integrated web database for type I polyketide synthases. Bioprocess Biosyst Eng 32(6):723–727

    Article  CAS  PubMed  Google Scholar 

  • Then Bergh KT, Litzka O, Brakhage AA (1996) Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans. J Bacteriol 178(13):3908–3916

    Google Scholar 

  • Thywißen A, Heinekamp T, Dahse HM, Schmaler-Ripcke J, Nietzsche S, Zipfel PF, Brakhage AA (2011) Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front Microbiol 2:96

    Article  PubMed Central  PubMed  Google Scholar 

  • Turner WB (1965) The production of trypacidin and monomethylsulochrin by Aspergillus fumigatus. J Chem Soc 6658-6659

  • Unkles SE, Valiante V, Mattern DJ, Brakhage AA (2014) Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chem Biol 21(4):502–508

    Article  CAS  PubMed  Google Scholar 

  • Van Waeyenberghe L, Baré J, Pasmans F, Claeys M, Bert W, Haesebrouck F, Houf K, Martel A (2013) Interaction of Aspergillus fumigatus conidia with Acanthamoeba castellanii parallels macrophage-fungus interactions. Environ Microbiol Rep 5(6):819–824

    Article  PubMed  Google Scholar 

  • Yaegashi J, Oakley BR, Wang CC (2014) Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. J Ind Microbiol Biotechnol 41(2):433–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Carmen Schult and Eva-Maria Neumann for excellent technical assistance, Andrea Perner for HRMS measurements, and Franziska Schmidt for macrophage cultivations. We also thank Thorsten Heinekamp and Maria Straßburger for insightful conversations. This work was supported by the Deutsche Forschungsgemeinschaft (DFG)-funded Graduate School of Excellence, Jena School for Microbial Communication, and the DFG-funded collaborative research center / Transregio (SFB/TR) 124 Human-pathogenic fungi and their human host–networks of interaction FungiNet (project A1 to AB and project B4 to MTF).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel A. Brakhage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattern, D.J., Schoeler, H., Weber, J. et al. Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus . Appl Microbiol Biotechnol 99, 10151–10161 (2015). https://doi.org/10.1007/s00253-015-6898-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6898-1

Keywords

Navigation