Skip to main content
Log in

Engineering Yarrowia lipolytica for production of medium-chain fatty acids

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lipids are naturally derived products that offer an attractive, renewable alternative to petroleum-based hydrocarbons. While naturally produced long-chain fatty acids can replace some petroleum analogs, medium-chain fatty acid would more closely match the desired physical and chemical properties of currently employed petroleum products. In this study, we engineered Yarrowia lipolytica, an oleaginous yeast that naturally produces lipids at high titers, to produce medium-chain fatty acids. Five different acyl-acyl carrier protein (ACP) thioesterases with specificity for medium-chain acyl-ACP molecules were expressed in Y. lipolytica, resulting in formation of either decanoic or octanoic acid. These novel fatty acid products were found to comprise up to 40 % of the total cell lipids. Furthermore, the reduction in chain length resulted in a twofold increase in specific lipid productivity in these engineered strains. The medium-chain fatty acids were found to be incorporated into all lipid classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90(4):1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Chardot T, Nicaud JM (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91:692–696

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Verbeke J, Bordes F, Guicherd M, Bressy M, Marty A, Nicaud JM (2014) Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 98(1):251–262

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Liu L, Knight R, Alper HS (2013) Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol 165(3):184–194

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Carroll KK (1961) Separation of lipid classes by chromatography on Florisil. J Lipid Res 2(2):135–141

    CAS  PubMed  Google Scholar 

  • Chandler DS, Qi J, Mattox W (2003) Direct repression of Splicing by transformer-2. Mol Cell Biol 23(15):5174–5185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Zhang J, Chen WN (2014) Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One 9(1)

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502(7472):571–574

    Article  CAS  PubMed  Google Scholar 

  • Cronan JE Jr, Rock CO (1996) Biosynthesis of membrane lipids Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 612–636

    Google Scholar 

  • Dörmann P, Spener F, Ohlrogge JB (1993) Characterization of two acyl-acyl carrier protein thioesterases from developing Cuphea seeds specific for medium-chain-and oleoyl-acyl carrier protein. Planta 189(3):425–432

    Article  PubMed  Google Scholar 

  • Dwivedi G, Sharma M (2014) Impact of cold flow properties of biodiesel on engine performance. Renew Sustain Energy Rev 31:650–656

    Article  CAS  Google Scholar 

  • Eccleston VS, Cranmer AM, Voelker TA, Ohlrogge JB (1996) Medium-chain fatty acid biosynthesis and utilization in Brassica napus plants expressing lauroyl-acyl carrier protein thioesterase. Planta 198(1):46–53

    Article  CAS  Google Scholar 

  • Fortman J, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26(7):375–381

    Article  CAS  PubMed  Google Scholar 

  • Freeman C, West D (1966) Complete separation of lipid classes on a single thin-layer plate. J Lipid Res 7(2):324–327

    CAS  PubMed  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  • Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 39(1):101–138

    Article  CAS  Google Scholar 

  • Jiang P, Cronan J (1994) Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. J Bacteriol 176(10):2814–2821

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12(1):44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landriscina C, Gnoni GV, Quagliariello E (1972) Fatty‐acid biosynthesis. Eur J Biochem 29(1):188–196

    Article  CAS  PubMed  Google Scholar 

  • Leber C, Da Silva N (2014) Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol Bioeng 111(2):347–358

    Article  CAS  PubMed  Google Scholar 

  • Leibundgut M, Maier T, Jenni S, Ban N (2008) The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 18:714–725

    Article  CAS  PubMed  Google Scholar 

  • Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25(12):1391–1396

    CAS  PubMed  Google Scholar 

  • Liu T, Vora H, Khosla C (2010) Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 12(4):378–386

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cheng T, Xian M, Cao Y, Fang F, Zou H (2014) Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals. Biotechnol Adv 32(2):382–389

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Pan A, Spofford C, Zhou N, Alper HS (2015) An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metab Eng 29:36–45

    Article  CAS  PubMed  Google Scholar 

  • Lomakin IB, Xiong Y, Steitz TA (2007) The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 129(2):319–332

    Article  PubMed  Google Scholar 

  • Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10(6):333–339

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  PubMed  Google Scholar 

  • Lynen F (1969) Yeast fatty acid synthase. Methods Enzymol 14:17–33

    Article  CAS  Google Scholar 

  • Madzak C (2015) Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 99(11):4559–4577

    Article  CAS  PubMed  Google Scholar 

  • Madzak C, Tréton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2(2):207–216

    CAS  PubMed  Google Scholar 

  • McMahon MD, Prather KL (2014) Functional screening and in vitro analysis reveal thioesterases with enhanced substrate specificity profiles that improve short-chain fatty acid production in Escherichia coli. Appl Environ Microbiol 80:1042–1050

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreno-Pérez AJ, Venegas-Caleron M, Vaistij FE, Salas JJ, Larson TJ, Garces R, Graham IA, Martinez-Force E (2012) Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Planta 235(3):629–639

    Article  PubMed  Google Scholar 

  • Moser BR (2011) Biodiesel production, properties, and feedstocks. In: Biofuels. Springer, pp 285–347

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Biol 48:109–136

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 113(8):1052–1073

    Article  CAS  Google Scholar 

  • Pollard MR, Anderson L, Fan C, Hawkins DJ, Davies HM (1991) A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch Biochem Biophys 284(2):306–312

    Article  CAS  PubMed  Google Scholar 

  • Qiao K, Abidi SHI, Liu H, Zhang H, Chakraborty S, Watson N, Stephanopoulos G (2015) Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29:56–65

    Article  CAS  PubMed  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100(1):261–268

    Article  CAS  PubMed  Google Scholar 

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113

    Article  CAS  PubMed  Google Scholar 

  • Santos TM, Pinto A, Oliveira AV, Ribeiro HL, Caceres CA, Ito EN, Azeredo H (2014) Physical properties of cassava starch–carnauba wax emulsion films as affected by component proportions. Int J Food Sci Technol 49(9):2045–2051

    Article  CAS  Google Scholar 

  • Sherkhanov S, Korman TP, Bowie JU (2014) Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab Eng 25:1–7

    Article  CAS  PubMed  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562

    Article  CAS  PubMed  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeas Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Ali S, Ahmad F, Ahmad M, Zafar M, Khalid N, Khan MA (2011) Identification, FT-IR, NMR (1 H and 13 C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Process Technol 92(3):336–341

    Article  CAS  Google Scholar 

  • Viegas CA, Rosa MF, Sá-Correia I, Novais JM (1989) Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl Environ Microbiol 55(1):21–28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257(5066):72–74

    Article  CAS  PubMed  Google Scholar 

  • Voelker TA, Jones A, Cranmer AM, Davies HM, Knutzon DS (1997) Broad-range and binary-range acyl-acyl-carrier-protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol 114(2):669–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • von Wettstein‐Knowles P, Olsen JG, McGuire KA, Henriksen A (2006) Fatty acid synthesis. FEBS J 273(4):695–710

    Article  Google Scholar 

  • Wakil SJ (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28(11):4523–4530

    Article  CAS  PubMed  Google Scholar 

  • Wang G-Y, Zhang Y, Chi Z, Liu G-L, Wang Z-P, Chi Z-M (2014) Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Appl Microbiol Biotechnol 1–9

  • White SW, Zheng J, Zhang YM, Rock CO (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, Damude HG, Ruper RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31(8):734–740

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, White SW, Rock CO (2006) Inhibiting bacterial fatty acid synthesis. J Biol Chem 281(26):17541–17544

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chen H, Li M, Gu Z, Song Y, Ratledge C, Chen W (2013) Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid. Microb Cell Factories 12(1):70

    Article  Google Scholar 

  • Zhang H, Zhang L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C (2014) Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP: citrate lyase from Mus musculus. J Biotechnol 192:78–84

  • Zheng Y-N, Li L-L, Liu Q, Yang J-M, Wang Z-W, Liu W, Xu X, Liu H, Zhao G, Xian M (2012) Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microb Cell Factories 11:65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Energy Biosciences Institute. We thank Jeffrey Skerker for his help during the early stages of this project and Chris Somerville for his help with lipid analysis.

Conflict of interest

The authors declare no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher V. Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutter, C.D., Zhang, S. & Rao, C.V. Engineering Yarrowia lipolytica for production of medium-chain fatty acids. Appl Microbiol Biotechnol 99, 7359–7368 (2015). https://doi.org/10.1007/s00253-015-6764-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6764-1

Keywords

Navigation